• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 16
  • 10
  • 7
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 209
  • 104
  • 58
  • 45
  • 37
  • 33
  • 29
  • 24
  • 24
  • 23
  • 22
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Protection of Scalable Video by Encryption and Watermarking / Protection des Vidéos Hiérarchiques par Cryptage et Tatouage

Shahid, Muhammad Zafar Javed 08 October 2010 (has links)
Le champ du traitement des images et des vidéos attire l'attention depuis les deux dernières décennies. Ce champ couvre maintenant un spectre énorme d'applications comme la TV 3D, la télé-surveillance, la vision par ordinateur, l'imagerie médicale, la compression, la transmission, etc. En ce début de vingt et unième siècle nous sommes témoins d'une révolution importante. Les largeurs de bande des réseaux, les capacités de mémoire et les capacités de calcul ont été fortement augmentés durant cette période. Un client peut avoir un débit de plus de 100~mbps tandis qu'un autre peut utiliser une ligne à 56~kbps. Simultanément, un client peut avoir un poste de travail puissant, tandis que d'autres peuvent avoir juste un téléphone mobile. Au milieu de ces extrêmes, il y a des milliers de clients avec des capacités et des besoins très variables. De plus, les préférences d'un client doivent s'adapter à sa capacité, par exemple un client handicapé par sa largeur de bande peut être plus intéressé par une visualisation en temps réel sans interruption que d'avoir une haute résolution. Pour y faire face, des architectures hiérarchiques de codeurs vidéo ont été introduites afin de comprimer une seule fois, et de décomprimer de différentes manières. Comme la DCT n'a pas la fonctionnalité de multi-résolution, une architecture vidéo hiérarchique est conçue pour faire face aux défis des largeurs de bande et des puissances de traitement hétérogènes. Avec l'inondation des contenus numériques, qui peuvent être facilement copiés et modifiés, le besoin de la protection des contenus vidéo a pris plus d'importance. La protection de vidéos peut être réalisée avec l'aide de trois technologies : le tatouage de méta-données et l'insertion de droits d'auteur, le cryptage pour limiter l'accès aux personnes autorisées et la prise des empreintes digitales active pour le traçage de traître. L'idée principale dans notre travail est de développer des technologies de protection transparentes à l'utilisateur. Cela doit aboutir ainsi à un codeur vidéo modifié qui sera capable de coder et d'avoir un flux de données protégé. Puisque le contenu multimédia hiérarchique a déjà commencé à voir le jour, algorithmes pour la protection indépendante de couches d 'amélioration sont également proposées. / Field of image and video processing has got lot of attention during the last two decades. This field now covers a vast spectrum of applications like 3D TV, tele-surveillance, computer vision, medical imaging, compression, transmission and much more. Of particular interest is the revolution being witnessed by the first decade of twenty-first century. Network bandwidths, memory capacities and computing efficiencies have got revolutionized during this period. One client may have a 100~mbps connection whereas the other may be using a 56~kbps dial up modem. Simultaneously, one client may have a powerful workstation while others may have just a smart-phone. In between these extremes, there may be thousands of clients with varying capabilities and needs. Moreover, the preferences of a client may adapt to his capacity, e.g. a client handicapped by bandwidth may be more interested in real-time visualization without interruption than in high resolution. To cope with it, scalable architectures of video codecs have been introduced to 'compress once, decompress many ways' paradigm. Since DCT lacks the multi-resolution functionality, a scalable video architecture is designed to cope with challenges of heterogeneous nature of bandwidth and processing power. With the inundation of digital content, which can be easily copied and modified, the need for protection of video content has got attention. Video protection can be materialized with help of three technologies: watermarking for meta data and copyright insertion, encryption to restrict access to authorized persons, and active fingerprinting for traitor tracing. The main idea in our work is to make the protection technology transparent to the user. This would thus result in a modified video codec which will be capable of encoding and playing a protected bitstream. Since scalable multimedia content has already started coming to the market, algorithms for independent protection of enhancement layers are also proposed.
112

Signature schemes in single and multi-user settings

Unknown Date (has links)
In the first chapters we will give a short introduction to signature schemes in single and multi-user settings. We give the definition of a signature scheme and explain a group of possible attacks on them. In Chapter 6 we give a construction which derives a subliminal-free RSA public key. In the construction we use a computationally binding and unconditionally hiding commitment scheme. To establish a subliminal-free RSA modulus n, we have to construct the secret primes p and q. To prove p and q are primes we use Lehmann's primality test on the commitments. The chapter is based on the paper, "RSA signature schemes with subliminal-free public key" (Tatra Mountains Mathematical Publications 41 (2008)). In chapter 7 a one-time signature scheme using run-length encoding is presented, which in the random oracle model offers security against chosen-message attacks. For parameters of interest, the proposed scheme enables about 33% faster verification with a comparable signature size than a construction of Merkle and Winternitz. The public key size remains unchanged (1 hash value). The main cost for the faster verification is an increase in the time required for signing messages and for key generation. The chapter is based on the paper "A one-time signature using run-length encoding" (Information Processing Letters Vol. 108, Issue 4, (2008)). / by Viktoria Villanyi. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
113

Proteção dos direitos autorais de imagem estática utilizando criptografia visual e marca d\'água / Still image copyright protection using visual cryptography and watermark

Feijó, Eduardo Almeida 18 May 2016 (has links)
A tecnologia atual não oferece prevenção contra cópia, adulteração ou plágio de uma imagem estática em meio digital sem autorização do verdadeiro autor. Dado que tais mal feitos não podem ser evitados, resta ao criador da obra original lutar a posteriori por seus direitos nos fóruns adequados (no tribunal, por exemplo). Na época da fotografia analógica com filme, o negativo poderia ser utilizado como prova. Hoje este recurso raramente está disponível e se faz necessária uma solução alternativa. A técnica de Marca d´Água é uma das possibilidades criptográficas existentes para apoiar o autor em sua defesa. O principio da Marca d´Água é o encapsulamento de informações relevantes, preferencialmente de forma imperceptível, na imagem a ser protegida. Tais informações, quando extraídas da imagem marcada, devem revelar o verdadeiro autor num processo de disputa. Soluções de Marca d´Água combinada com Criptografia Visual são encontradas na literatura. A principal vantagem deste caminho é a propriedade Imperceptível por segurança perfeita que a Marca d´Água assume quando tratada por Criptografia Visual. O segredo (neste caso, a Marca d´Água) é segmentado via Criptografia Visual em 2 transparências: uma delas é encapsulada na imagem a ser protegida e a outra é mantida pelo verdadeiro autor. Basta a sobreposição de tais transparências para que a Marca d´Água seja revelada. Nesta pesquisa propomos um novo método, denominado MACV, que combina Marca d´Água, Criptografia Visual e um algoritmo de hashing. O MACV apresenta, entre outras, as seguintes propriedades desejáveis de Marca d´Água: imperceptível por segurança perfeita, alta entropia, armazenamento na própria imagem e sem ambiguidade. Veremos em nossa pesquisa bibliográfica que há uma lacuna de soluções que apresentem, simultaneamente, todas estas propriedades. Esta lacuna torna o MACV único em sua categoria. / Current technology does not prevent copy, tamper or plagiarism of a still image in digital media without authorization of the true author. Since such misdeeds can not be avoided, the creator of the original work has to defend his rights a posteriori in the appropriate forum (in court, for example). A negative could be used as evidence in the era of analog photography. Currently this feature is rarely available and an alternative solution is needed. Watermark is one of the existing cryptographic possibilities to support the author in his defense. A Watermark is embedded into the image to be protected, preferably imperceptibly. Such information when extracted from the watermarked image should reveal the true author in a dispute process. Solutions using Watermark with Visual Cryptography are found in the literature. The main advantage of this way is the property Imperceptible by perfect secrecy that the Water- mark assumes when treated by Visual Cryptography. The key (in this case, the Watermark) is partitioned by Visual Cryptography in 2 transparencies: one is embedded in the image to be protected and the other is kept by the true author. The Watermark is revealed by overlapping such transparencies. In this research we propose a new method, called MACV, combining Watermark, Vi- sual Cryptography and a hashing algorithm. The MACV has, among others, the following desirable properties of Watermark: invisible by perfect secrecy, high entropy, stored into the image itself and unambiguously. We will see in our research that there is no solution that presents, simultaneously, all these properties. This fact makes the MACV the first one to show all these properties
114

The inexact Newton-like method for inverse eigenvalue problem and a DCT based watermarking scheme for copyright protection of images.

January 2002 (has links)
by Hau-Leung Chung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 41-42). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.5 / Chapter 1.1 --- Paper I --- p.5 / Chapter 1.2 --- Paper II --- p.6 / Chapter 2 --- The Inexact Newton-Like Method for Inverse Eigen- value Problem --- p.8 / Chapter 2.1 --- Introduction --- p.8 / Chapter 2.2 --- The Newton-Like Method --- p.9 / Chapter 2.3 --- The Inexact Newton-Like Method --- p.11 / Chapter 2.4 --- Convergence Analysis --- p.14 / Chapter 2.5 --- Numerical Experiments --- p.22 / Chapter 3 --- A DCT Based Watermarking Scheme for Copyright Protection of Images --- p.26 / Chapter 3.1 --- Introduction --- p.26 / Chapter 3.2 --- Preliminary --- p.28 / Chapter 3.2.1 --- Gray-level image --- p.28 / Chapter 3.2.2 --- Color image --- p.29 / Chapter 3.2.3 --- The Discrete Cosine transform --- p.30 / Chapter 3.3 --- Watermarking Approaches --- p.31 / Chapter 3.3.1 --- Insertion procedures --- p.31 / Chapter 3.3.2 --- Retrieval procedures --- p.33 / Chapter 3.4 --- Experimental results --- p.34 / Chapter 3.5 --- Other Applications --- p.38 / Chapter 3.5.1 --- Data Hiding --- p.38 / Chapter 3.5.2 --- Authentication --- p.39 / Chapter 3.5.3 --- Fingerprinting --- p.39 / Chapter 3.5.4 --- Copy Control --- p.39 / Chapter 3.6 --- Conclusion --- p.40 / Bibliography --- p.41
115

Robust logo watermarking

Barr, Mohammad January 2018 (has links)
Digital image watermarking is used to protect the copyright of digital images. In this thesis, a novel blind logo image watermarking technique for RGB images is proposed. The proposed technique exploits the error correction capabilities of the Human Visual System (HVS). It embeds two different watermarks in the wavelet/multiwavelet domains. The two watermarks are embedded in different sub-bands, are orthogonal, and serve different purposes. One is a high capacity multi-bit watermark used to embed the logo, and the other is a 1-bit watermark which is used for the detection and reversal of geometrical attacks. The two watermarks are both embedded using a spread spectrum approach, based on a pseudo-random noise (PN) sequence and a unique secret key. Robustness against geometric attacks such as Rotation, Scaling, and Translation (RST) is achieved by embedding the 1-bit watermark in the Wavelet Transform Modulus Maxima (WTMM) coefficients of the wavelet transform. Unlike normal wavelet coefficients, WTMM coefficients are shift invariant, and this important property is used to facilitate the detection and reversal of RST attacks. The experimental results show that the proposed watermarking technique has better distortion parameter detection capabilities, and compares favourably against existing techniques in terms of robustness against geometrical attacks such as rotation, scaling, and translation.
116

A Localized Geometric-Distortion Resilient Digital Watermarking Scheme Using Two Kinds of Complementary Feature Points

Wang, Jiyuan 01 May 2012 (has links)
With the rapid development of digital multimedia and internet techniques in the last few years, more and more digital images are being distributed to an ever-growing number of people for sharing, studying, or other purposes. Sharing images digitally is fast and cost-efficient thus highly desirable. However, most of those digital products are exposed without any protection. Thus, without authorization, such information can be easily transferred, copied, and tampered with by using digital multimedia editing software. Watermarking is a popular resolution to the strong need of copyright protection of digital multimedia. In the image forensics scenario, a digital watermark can be used as a tool to discriminate whether original content is tampered with or not. It is embedded on digital images as an invisible message and is used to demonstrate the proof by the owner. In this thesis, we propose a novel localized geometric-distortion resilient digital watermarking scheme to embed two invisible messages to images. Our proposed scheme utilizes two complementary watermarking techniques, namely, local circular region (LCR)-based techniques and block discrete cosine transform (DCT)-based techniques, to hide two pseudo-random binary sequences in two kinds of regions and extract these two sequences from their individual embedding regions. To this end, we use the histogram and mean statistically independent of the pixel position to embed one watermark in the LCRs, whose centers are the scale invariant feature transform (SIFT) feature points themselves that are robust against various affine transformations and common image processing attacks. This watermarking technique combines the advantages of SIFT feature point extraction, local histogram computing, and blind watermark embedding and extraction in the spatial domain to resist geometric distortions. We also use Watson’s DCT-based visual model to embed the other watermark in several rich textured 80×80 regions not covered by any embedding LCR. This watermarking technique combines the advantages of Harris feature point extraction, triangle tessellation and matching, the human visual system (HVS), the spread spectrum-based blind watermark embedding and extraction. The proposed technique then uses these combined features in a DCT domain to resist common image processing attacks and to reduce the watermark synchronization problem at the same time. These two techniques complement each other and therefore can resist geometric and common image processing attacks robustly. Our proposed watermarking approach is a robust watermarking technique that is capable of resisting geometric attacks, i.e., affine transformation (rotation, scaling, and translation) attacks and other common image processing (e.g., JPEG compression and filtering operations) attacks. It demonstrates more robustness and better performance as compared with some peer systems in the literature.
117

Perception and re-synchronization issues for the watermarking of 3D shapes

Rondao Alface, Patrice 26 October 2006 (has links)
Digital watermarking is the art of embedding secret messages in multimedia contents in order to protect their intellectual property. While the watermarking of image, audio and video is reaching maturity, the watermarking of 3D virtual objects is still a technology in its infancy. In this thesis, we focus on two main issues. The first one is the perception of the distortions caused by the watermarking process or by attacks on the surface of a 3D model. The second one concerns the development of techniques able to retrieve a watermark without the availability of the original data and after common manipulations and attacks. Since imperceptibility is a strong requirement, assessing the visual perception of the distortions that a 3D model undergoes in the watermarking pipeline is a key issue. In this thesis, we propose an image-based metric that relies on the comparison of 2D views with a Mutual Information criterion. A psychovisual experiment has validated the results of this metric for the most common watermarking attacks. The other issue this thesis deals with is the blind and robust watermarking of 3D shapes. In this context, three different watermarking schemes are proposed. These schemes differ by the classes of 3D watermarking attacks they are able to resist to. The first scheme is based on the extension of spectral decomposition to 3D models. This approach leads to robustness against imperceptible geometric deformations. The weakness of this technique is mainly related to resampling or cropping attacks. The second scheme extends the first to resampling by making use of the automatic multiscale detection of robust umbilical points. The third scheme then addresses the cropping attack by detecting robust prong feature points to locally embed a watermark in the spatial domain.
118

Steganography Through Perspective Invariance

Yasaroglu, Yagiz 01 September 2012 (has links) (PDF)
A novel approach for watermarking of 3D models is introduced, for which data is embedded into 3D models, whereas extracted from their projected 2D visual or 2D-plus-depth representations. Such a watermarking system is valuable, since most of the 3D content is being consumed as 2D visual data. Apart from the efficiency of embedding data into 3D models before generation of arbitrary 2D projections, in some use cases, such as free viewpoint video or computer games, 2D content has to be rendered at the client, where watermarking is less secure. In order to achieve this aim, 3D-2D perspective projection invariants, as well as 3D projective invariants are used and utilization of such invariants enables the method to be independent of the viewpoint from which 2D representations are generated. The first method proposed employs a perspective projection invariant to extract hidden data from an arbitrary 2D view of a watermarked 3D model. Data is encoded in the relative positions of six interest points, selection of which requires minimal criteria. Two main problems for such a watermarking system are identified as noise sensitivity of the invariant and repeatability of the interest point detection. By optimizing an objective function considering this sensitivity, the optimal 3D interest point displacements are obtained. Performance of the proposed system is evaluated through simulations on polygonal 3D mesh models and the results strongly indicate that perspective invariant-based watermarking is feasible. As an extenstion for 2D plus depth representation of 3D models, data embedded in 3D models is also detected by combining information in 2D views and range data by utilizing another projective invariant. Finally, the problem of repeatable interest point detection that remain detectable after data embedding, is also examined and a novel method to identify such repeatable interest points is presented. The proposed methods indicate a new direction in watermarking research.
119

Digital Video Watermarking Robust to Geometric Attacks and Compressions

Liu, Yan 03 October 2011 (has links)
This thesis focuses on video watermarking robust against geometric attacks and video compressions. In addition to the requirements for an image watermarking algorithm, a digital video watermarking algorithm has to be robust against advanced video compressions, frame loss, frame swapping, aspect ratio change, frame rate change, intra- and inter-frame filtering, etc. Video compression, especially, the most efficient compression standard, H.264, and geometric attacks, such as rotation and cropping, frame aspect ratio change, and translation, are considered the most challenging attacks for video watermarking algorithms. In this thesis, we first review typical watermarking algorithms robust against geometric attacks and video compressions, and point out their advantages and disadvantages. Then, we propose our robust video watermarking algorithms against Rotation, Scaling and Translation (RST) attacks and MPEG-2 compression based on the logpolar mapping and the phase-only filtering method. Rotation or scaling transformation in the spatial domain results in vertical or horizontal shift in the log-polar mapping (LPM) of the magnitude of the Fourier spectrum of the target frame. Translation has no effect in this domain. This method is very robust to RST attacks and MPEG-2 compression. We also demonstrate that this method can be used as a RST parameters detector to work with other watermarking algorithms to improve their robustness to RST attacks. Furthermore, we propose a new video watermarking algorithm based on the 1D DFT (one-dimensional Discrete Fourier Transform) and 1D projection. This algorithm enhances the robustness to video compression and is able to resist the most advanced video compression, H.264. The 1D DFT for a video sequence along the temporal domain generates an ideal domain, in which the spatial information is still kept and the temporal information is obtained. With detailed analysis and calculation, we choose the frames with highest temporal frequencies to embed the fence-shaped watermark pattern in the Radon transform domain of the selected frames. The performance of the proposed algorithm is evaluated by video compression standards MPEG-2 and H.264; geometric attacks such as rotation, translation, and aspect-ratio changes; and other video processing. The most important advantages of this video watermarking algorithm are its simplicity, practicality and robustness.
120

Towards Template Security for Iris-based Biometric Systems

Fouad, Marwa 18 April 2012 (has links)
Personal identity refers to a set of attributes (e.g., name, social insurance number, etc.) that are associated with a person. Identity management is the process of creating, maintaining and destroying identities of individuals in a population. Biometric technologies are technologies developed to use statistical analysis of an individual’s biological or behavioral traits to determine his identity. Biometrics based authentication systems offer a reliable solution for identity management, because of their uniqueness, relative stability over time and security (among other reasons). Public acceptance of biometric systems will depend on their ability to ensure robustness, accuracy and security. Although robustness and accuracy of such systems are rapidly improving, there still remain some issues of security and balancing it with privacy. While the uniqueness of biometric traits offers a convenient and reliable means of identification, it also poses the risk of unauthorized cross-referencing among databases using the same biometric trait. There is also a high risk in case of a biometric database being compromised, since it’s not possible to revoke the biometric trait and re-issue a new one as is the case with passwords and smart keys. This unique attribute of biometric based authentication system poses a challenge that might slow down public acceptance and the use of biometrics for authentication purposes in large scale applications. In this research we investigate the vulnerabilities of biometric systems focusing on template security in iris-based biometric recognition systems. The iris has been well studied for authentication purposes and has been proven accurate in large scale applications in several airports and border crossings around the world. The most widely accepted iris recognition systems are based on Daugman’s model that creates a binary iris template. In this research we develop different systems using watermarking, bio-cryptography as well as feature transformation to achieve revocability and security of binary templates in iris based biometric authentication systems, while maintaining the performance that enables widespread application of these systems. All algorithms developed in this research are applicable on already existing biometric authentication systems and do not require redesign of these existing, well established iris-based authentication systems that use binary templates.

Page generated in 0.111 seconds