• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DECOMPOSING A WATERSHED’S NITRATE SIGNAL USING SPATIAL SAMPLING AND CONTINUOUS SENSOR DATA

Clare, Evan 01 January 2019 (has links)
Watershed features, physiographic setting, geology, climate, and hydrologic processes combine to produce a time-variant nutrient concentration signal at the watershed outlet. Anthropogenic influences, such as increased agricultural pressures and urbanization, have increased overall nutrient loadings delivered to the fluvial network. The impact of such increased nutrient loadings on Kentucky’s drinking water remains a potential threat to the region. By coupling spatial sampling of nitrate concentrations in surface water with contemporary nutrient and water quality sensor technology, a decomposition of the Upper South Elkhorn watershed’s nitrate signal and an estimation of source timing and loading in the watershed was completed. The goal of the project was the decomposition of the integrated nitrate signal observed at the outlet of the Upper South Elkhorn watershed into contributing runoff and groundwater sources from agricultural/pasture and urban/suburban land-uses. Decomposing the watershed’s nitrate signal yielded new knowledge learned about nitrate source, fate and transport in immature fluviokarst. This thesis discusses how mean, seasonal, and fluctuating nitrate behavior is related to soil processes, groundwater transfer, streambed removal, and event dynamics. It is expected that the decomposition of the nitrate signal will allow for the targeting of both the timing and sources for nutrient reductions in a watershed.

Page generated in 0.1199 seconds