1 |
Travelling wave control of stringed musical instrumentsDonovan, Liam January 2018 (has links)
Despite the increasing sophistication of digital musical instruments, many performers, composer and listeners remain captivated by traditional acoustic instruments. Interest has grown in the past 2 decades in augmenting acoustic instruments with sensor and actuator technology and integrated digital signal processing, expanding the instrument's capabilities while retaining its essential acoustic character. In this thesis we present a technique, travelling wave control, which allows active control of the vibrations of musical strings and yet has been little explored in the musical instrument literature to date. The thesis seeks to demonstrate that travelling wave control is capable of active damping and of modifying the timbre of a musical string in ways that go beyond those available through the more conventional modal control paradigm. However, we show that travelling wave control is highly sensitive to nonlinearity, which in practical settings can lead to harmonic distortion and even instability in the string response. To avoid these problems, we design and build a highly linear optical string displacement sensor, and investigate the use of piezoelectric stacks to actuate the termination point of a string. With these components we design and build a functioning travelling wave control system which is capable of damping the vibrations of a plucked string without adversely affecting its timbre. We go on to show that by deliberately adding nonlinearity into the control system, we are able to modify the timbre of the string in a natural way by affecting the evolution of the modal amplitudes. The results demonstrate the feasibility of the concept and lay the groundwork for future integration of travelling wave control into future actuated musical instruments.
|
2 |
Engineering Electromagnetic Wave Properties Using Subwavelength Antennas StructuresWang, Shiyi 27 May 2015 (has links)
No description available.
|
3 |
Linear and Nonlinear Waves in Magneto-granular Phononic Structures : Theory and Experiments / Propagation d'ondes linéaires et nonlinéaires dans les structures phononiques magnéto-granulaires : théories et expériencesAllein, Florian 14 June 2017 (has links)
Les cristaux granulaires sont des arrangements périodiques ou structurés de particules élastiques en contact. Ce travail de thèse porte sur l’étude théorique et expérimentale de la propagation d’ondes élastiques à travers de telles structures.Un cristal granulaire unidimensionnel composé d’une chaîne de billes d’acier couplées à des aimants permanents fixes est tout d’abord étudié. Les forces statiques de contact entre les billes, déterminantes pour les caractéristiques de la propagation et la dispersion des ondes élastiques, sont créées par le champ magnétique des aimants. Cette configuration permet donc d’adapter la réponse dynamique du milieu en modifiant les forces magnétiques des aimants. Un modèle linéaire prenant en compte tous les degrés de liberté en translations et rotations des billes et les couplages élastiques (longitudinal, de cisaillement et de torsion) entre billes et entre les billes et un substrat est développé. Il permet d’obtenir les relations de dispersion des modes de propagation dans ce système en fonction des différents paramètresde couplage. Les expériences réalisées mettent en évidence la propagation de modes élastiques avec micro-rotation des billes et démontrent la pertinence du modèle pour la description de ce système. Plusieurs effets de dispersion intéressants sont observés et discutés, modes à vitesse de groupe nulle, modes mous. . . Dans un second temps, une étude prenant en compte les nonlinéarités de contact permet de prédire et d’observer expérimentalement la génération d’harmonique, le filtrage d’harmoniques ainsi que la conversion de modes longitudinaux vers des modes couplés de translation-rotation dans des structures granulaires s’écartant des chaines unidimensionnelles simples. Ces travaux ouvrent des perspectives intéressantes pour le contrôle d’ondes élastiques, dans le régime non linéaire, avec desstructures granulaires architecturées. / Granular crystals are periodic or structured arrangements of elastic particles in contact. This work is devoted to theoretical and experimental study of the elastic wave propagation through such structures.A one-dimensional granular crystal composed of steel spherical beads coupled to permanent magnets placed in a substrate is first studied. Static forces at the contact between beads, determining the wave propagation and dispersion characteristics, are induced by the magnetic field from the magnets. This configuration enables tuning the dynamic response of the chain by modifying the magnetic strength of the magnets. A linear model taking into account all degrees of freedom of the beads (three translations and three rotations) as well as all elastic couplings (longitudinal, shear and torsional), between the beads and between the beads and the substrate is developed. This model provides the dispersionrelations of the modes in the system for different coupling parameters. The associated experiments confirm the elastic propagation of modes with micro-rotation of beads and demonstrate the pertinence of the model for the system description. Several interesting effects on the dispersion are observed and discussed, zero group velocity modes, soft modes. . .In a second part, we take into account the nonlinearities originating from the contacts to predict and then observe experimentally the second harmonic generation. The filtering of harmonics along with conversion from longitudinal to coupled transversalrotational modes in granular structures, is also observed for a configuration deviating from simple one-dimensional chains. This work opens the way for interesting applications in elastic wave control, in the nonlinear regime, with structured granular devices.
|
4 |
Controlling guided elastic waves using adaptive gradient-index structuresYi, Kaijun 14 November 2017 (has links)
Les matériaux à gradient d'indice de réfraction (GRIN) présentent des propriétés mécaniques variant en temps ou/et en espace. Ils ont été testés pour des applications prometteuses dans de nombreuses applications d'ingénierie, comme pour le contrôle santé structurale ou la surveillance de structure (SHM), le contrôle des vibrations et bruit, la récupération d'énergie, etc. D'un autre côté, les matériaux piézoélectriques offrent la possibilité de réaliser des cellules composites dont les propriétés mécaniques peuvent être contrôlées en ligne. Motivé par ces deux approches, cette thèse étudie la mise en œuvre de structures GRIN adaptatifs pour le contrôle des ondes élastiques. Deux types de structures GRIN adaptatifs sont étudiés dans ce travail. Le premier exemple concerne la mise en œuvre d'une lentille piézoélectrique dans une plaque. Il est composé de patchs piézoélectriques shuntés, collés périodiquement en surface du guide d'ondes. Les circuits de shunt utilisés permettent d'émuler une capacité négative (NC). En accordant les valeurs de NC on peut ajuster l'indices de réfraction du milieu à l'intérieur de la lentille piézoélectrique et pour satisfaire une fonction sécante hyperbolique. Les résultats numériques montrent que les lentilles piézoélectriques peuvent alors focaliser les ondes de flexion de la plaque sur les points focaux. La lentille piézoélectrique est efficace dans une grande bande de fréquences et efficace dans une grande plage de fonctionnement. Ainsi elle peut focaliser des ondes sur différent points par simple ajustement des valeurs de NC réalisés par le circuit. Cette focalisation adaptative la rend très intéressante pour de nombreuses applications comme la récupération d'énergie ou le SHM. La mise en œuvre de ces techniques pour la récupération d'énergie est discutée dans cette thèse. Le second exemple concerne l'étude d'une structure dont les propriétés mécaniques sont contrôlées en temps et en espace. En particulier, une modulation périodique permet de créer une onde artificielle se propageant dans la structure. L'interaction avec des ondes mécaniques entraîne une rupture de réciprocité visible dans un diagramme de bande non symétrique. De nombreux phénomènes inhabituels sont observés dans ce type de structures variables : fractionnement des fréquences, conversion d'ondes et transmission unidirectionnelles. Deux types de conversion fréquentielle sont démontrés et expliqués. Le premier est induit par la transmission d'énergie entre les différents modes Bloch et le second type est dû à la diffusion de Bragg dans les structures modulées. La transmission unidirectionnelle des ondes pourrait être exploitée pour réaliser des diodes dans des systèmes infinis ou semi-infinis. Cependant, la transmission unidirectionnelle n'existe pas dans les systèmes finis en raison des phénomènes de conversion de fréquence. / GRadient INdex (GRIN) media are those whose properties smoothly vary in space or/and time. They have shown promising effects in many engineering applications, such as Structural Health Monitoring (SHM), vibration and noise control, energy harvesting, etc. On the other hand, piezoelectric materials provide the possibility to build unit cells, whose mechanical properties can be controlled on-line. Motivated by these two facts, adaptive GRIN structures, which can be realized using shunted piezoelectric materials, are explored in this dissertation to control guided elastic waves. Two types of adaptive GRIN structures are studied in this work. The first type is a piezo-lens. It is composed of shunted piezoelectric patches bonded on the surfaces of plates. To control the mechanical properties of the piezoelectric composite, the piezoelectric patches are shunted with Negative Capacitance (NC). By tuning the shunting NC values, refractive indexes inside the piezo-lens are designed to satisfy a hyperbolic secant function in space. Numerical results show that the piezo-lens can focus waves by smoothly bending them toward the designated focal point. The piezo-lens is effective in a large frequency band and is efficient in many different working conditions. Also the same piezo-lens can focus waves at different locations by tuning the shunting NC values. The focusing effect and tunable feature of piezo-lens make it useful in many applications like energy harvesting and SHM. The former application is fully discussed in this thesis. The focusing effect at the focal point results in a known point with high energy density, therefore harvesting at the focal point can yield more energy. Besides, the tunable ability makes the harvesting system adaptive to environment changes. The second type is the time-space modulated structure. Its properties are modulated periodically both in time and space. Particularly, the modulation works like a traveling wave in the structure. Due to the time-varying feature, time-space modulated structures break the reciprocity theorem, i.e., the wave propagation in them is nonreciprocal. Many unusual phenomena are observed during the interaction between waves and time-space modulated structures: frequency splitting, frequency conversion and one-way wave transmission. Two types of frequency conversion are demonstrated and explained. The first type is caused by energy transmission between different orders Bloch modes. The second type is due to the Bragg scattering effect inside the modulated structures. The one-way wave transmission could be exploited to realize one-way energy insulation in equivalent infinite or semi-inffnite systems. However, the one-way energy insulation fails in finite systems due to the frequency conversion phenomenon.
|
5 |
Vodohospodářské řešení ochranné vodní nádrže v povodí Kobylího potoka / Water Management Solution of Retention Function of the Kobylí potok reservoirŠourek, Jan January 2013 (has links)
The subject of the thesis is to design proposal protective water management solution reservoirs in the basin Kobylí potok. This thesis consist of the text, hydraulic calculation and graphic.
|
6 |
Controlling flexural waves using subwavelength perfect absorbers : application to Acoustic Black Holes / Contrôle des ondes de flexion au moyen d’absorbeurs parfaits sub-longueur d’onde : application au trou noir acoustiqueLeng, Julien 05 November 2019 (has links)
Le contrôle des vibrations à basse fréquence adapté aux structures légères est un défi scientifique ettechnologique en raison de contraintes économiques et écologiques de plus en plus strictes. De récentes études enacoustique ont portées sur l’absorption totale d’ondes basses fréquences à l’aide d’absorbeurs parfaits sublongueursd’onde. Ces métamatériaux sont obtenus en exploitant la condition de couplage critique. Unegénéralisation de cette méthode pour le domaine élastodynamique serait d’un grand intérêt pour répondre auxexigences du contrôle des vibrations de structures légères à basse fréquence.Cette thèse vise à adapter le problème d’absorption parfaite des ondes de flexion dans des systèmes 1D et 2D avecdes résonateurs locaux en utilisant la condition de couplage critique. Une étude préliminaire sur des systèmes 1D àgéométries simples sont d’abord proposée. Celle-ci propose une méthode de conception de résonateurs simplespour une absorption efficace des ondes de flexion. Une complexification du système 1D est ensuite considérée avecl’étude du couplage critique de Trou Noir Acoustique (TNA) 1D. Ceci a motivé l’interprétation de l’effet TNA à l’aidedu concept de couplage critique afin de présenter des outils clés à de futures procédures d’optimisation pour ce typede terminaisons. La condition de couplage critique est ensuite étendue aux systèmes 2D. L’absorption parfaite parle premier mode axisymétrique d’un résonateur circulaire inséré dans une plaque mince infinie est analysée. Ladiffusion multiple par une ligne de résonateurs circulaires insérés dans une plaque mince 2D infinie ou semi-infinie,appelée métaplaque, est aussi considérée dans l’optique de se rapprocher d’une application industrielle. A traverscette thèse, des modèles analytiques, des simulations numériques et des expériences sont présentés pour valider lecomportement physique des systèmes présentés. / The vibration control adapted to light structures is a scientific and technological challenge due toincreasingly stringent economic and ecological standards. Meanwhile, recent studies in audible acoustics havefocused on broadband wave absorption at low frequencies by means of subwavelength perfect absorbers. Suchmetamaterials can totally absorb the energy of an incident wave. The generalisation of this method for applicationsin elastodynamics could be of great interest for the vibration control of light structures.This thesis aims at adapting the perfect absorption problem for flexural waves in 1D and 2D systems with localresonators using the critical coupling condition. A study of 1D systems with simple geometries is first proposed. Thisprovides methods to design simple resonators for an effective absorption of flexural waves. The 1D systems thenbecome more complex by studying the critical coupling of 1D Acoustic Black Holes (ABH). The ABH effect is theninterpreted using the concept of critical coupling, and key features for future optimisation procedures of ABHs arepresented. The critical coupling condition is then extended to 2D systems. The perfect absorption by the firstaxisymmetric mode of a circular resonator inserted in a thin plate is analysed. Multiple scattering by an array ofcircular resonators inserted in an infinite or semi-infinite 2D thin plate, called metaplate, is also considered to getclose to practical applications. Through this thesis, analytical models, numerical simulations and experiments areshown to validate the physical behaviour of the systems presented.
|
Page generated in 0.0737 seconds