• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and Advanced Control of Fully Coupled Wave Energy Converters Subject to Constraints: the Wave-to-wire Approach

Wang, Liguo January 2017 (has links)
Ocean wave energy is a promising renewable source to contribute to supplying the world’s energy demand. The Division of Electricity at Uppsala University is developing a technology to capture energy from ocean waves with a wave energy converter (WEC) consisting of a linear permanent magnet generator and a point absorber. The linear generator is placed on sea bed and is driven directly by the floating absorber. Since March 2006, multiple wave energy converters have been deployed on the Swedish west coast outside the town of Lysekil. The technology is verified by long-term operation during at sea and satisfactory reliability of the electricity generation. This thesis focuses on developing advanced control strategies for fully coupled wave energy converters subject to constraints. A nonlinear control strategy is studied in detail for a single WEC subject to constraints under regular and irregular waves. Besides, two coordinated control strategies are developed to investigate the performance of a wave energy farm subject to constraints. The performance of the WECs using these control strategies are investigated in case studies, and optimal PTO damping coefficients are found to maximize the output power. The results show that these control strategies can significantly improve the performance of the WECs, in terms of mean power, compared to a conventional control. Besides these control strategies, a wave-to-wire simulation platform is built to study the power generation control of the WEC subject to constraints.  The wave-to-wire simulation platform allows both nonlinear and linear control force. The results show that there is a good agreement between the desired value and the actual value after advanced control.
2

Modelling the Resilience of Offshore Renewable Energy System Using Non-constant Failure Rates

Beyene, Mussie Abraham January 2021 (has links)
Offshore renewable energy systems, such as Wave Energy Converters or an Offshore Wind Turbine, must be designed to withstand extremes of the weather environment. For this, it is crucial both to have a good understanding of the wave and wind climate at the intended offshore site, and of the system reaction and possible failures to different weather scenarios. Based on these considerations, the first objective of this thesis was to model and identify the extreme wind speed and significant wave height at an offshore site, based on measured wave and wind data. The extreme wind speeds and wave heights were characterized as return values after 10, 25, 50, and 100 years, using the Generalized Extreme Value method. Based on a literature review, fragility curves for wave and wind energy systems were identified as function of significant wave height and wind speed. For a wave energy system, a varying failure rate as function of the wave height was obtained from the fragility curves, and used to model the resilience of a wave energy farm as a function of the wave climate. The cases of non-constant and constant failure rates were compared, and it was found that the non-constant failure rate had a high impact on the wave energy farm's resilience. When a non-constant failure rate as a function of wave height was applied to the energy wave farm, the number of Wave Energy Converters available in the farm and the absorbed energy from the farm are nearly zero. The cases for non-constant and an averaged constant failure of the instantaneous non-constant failure rate as a function of wave height were also compared, and it was discovered that investigating the resilience of the wave energy farm using the averaged constant failure rate of the non-constant failure rate results in better resilience. So, based on the findings of this thesis, it is recommended that identifying and characterizing offshore extreme weather climates, having a high repair rate, and having a high threshold limit repair vessel to withstand the harsh offshore weather environment.

Page generated in 0.0846 seconds