• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Simulation on the pile toppling in the coast water

Tseng, Mei-hui 08 September 2007 (has links)
This paper studies the relationship between the degree of compactness of the pile structure foundation and how it will tilt under different wave condition. In the lab experiment setup, we use a periodic force generated by a magnetic coil to simulate the wave force impending on a scaled down model pile. With this setup, forces with different periods and magnitudes are used to find out the critical wave condition under which the pile will tilt, and it relationship with the results, engineering aspect of setting up a pile structure in the sea will have a better reference in the design stage.
2

Experimental study of wave forces and de-draggers device for vertical and horizontal cylinders

Xie, Rong-Hua 26 July 2001 (has links)
ABSTRACT The purpose of the study is to design and test the devices(de-draggers) that can be incorporated to cylinders to reduce wave forces¡C Two force gauges have been designed to measure simultaneously the x- and z-direction wave forces, especially, for a horizontal cylinder, and the x- and y-direction wave forces, for a vertical cylinder¡C A device with water-drop shape has been fabricated to streamline the flow pattern around the cylinder that can effectively reduce the wake-induced wave force¡C The study will be performed in a wave tank by varying wave conditions and the positions of the cylinder¡CWave forces on the vertical and horizontal cylinders will be measured and compared for the cylinders with and without de-draggers,¡@respectively¡C
3

The Study on Damage Index of Safety Evaluation for RC Structure in the Harbor

Yu, Tzong-Hong 17 September 2001 (has links)
As we all know that Taiwan is an island surrounded by oceans. Around the island are many international commercial harbors, domestic fishery harbors and harbors for industrial purposes. However, these harbors are facing safety challenges from the strong wind induced waves during monsoon seasons and typhoon due to tropical depressions. The material degradation, fatigue induced from vibrations and the forced deformation of the whole structural system can not usually be observed until serious damages are realized. It is too late to do the fixing job or to replace the damaged components for the harbor while spending multi-million dollars on rebuilding the damaged facilities is the left choice. If we may find the gradual damages of the harbor in advance and establish a procedure to do the minor fixing or correcting works then during the hash environmental situations the serious damages may be prevented and lots of money can be saved also. There are many ways to do a routine inspection on the structures. However, for the structures in the harbor usually it is not quite easy to do this due to the fact that most structures are under the water. Therefore how to find the efficient and economic methods to investigate the harbor damages corresponding to various material constructions and based on the examination results to establish an alert system and to grade the damage-state will be important. The investigation methods may generally be divided into a general method and method of more detailed. The general methods usually need more experiences but less equipment. However, for the more detailed examination, more advanced equipment and scheme are required. After the inspection how to coordinate the raw data and find the relationship between the data and the damage-state of the structure will be one of the tasks. It is the purpose of this project to find efficient means for the inspection and set up a standard procedure to inspect the harbor structures routinely. In terms of the method, timing, schedule, frequency and appropriateness the evaluation standard for the structural damage is suggested and based on the evaluated results the damage grade is defined quantitatively for the harbor structures. Thus the harbor bureau may effectively manage the harbor structure and maintain the operational safety for the harbor.
4

潜堤上の構造物に作用する波力とその算定法に関する研究

水谷, 法美, MIZUTANI, Norimi, 許, 東秀, HUR, Dong-Soo 08 1900 (has links)
No description available.
5

Extending the scaled boundary finite-element method to wave diffraction problems

Li, Boning January 2007 (has links)
[Truncated abstract] The study reported in this thesis extends the scaled boundary finite-element method to firstorder and second-order wave diffraction problems. The scaled boundary finite-element method is a newly developed semi-analytical technique to solve systems of partial differential equations. It works by employing a special local coordinate system, called scaled boundary coordinate system, to define the computational field, and then weakening the partial differential equation in the circumferential direction with the standard finite elements whilst keeping the equation strong in the radial direction, finally analytically solving the resulting system of equations, termed the scaled boundary finite-element equation. This unique feature of the scaled boundary finite-element method enables it to combine many of advantages of the finite-element method and the boundaryelement method with the features of its own. ... In this thesis, both first-order and second-order solutions of wave diffraction problems are presented in the context of scaled boundary finite-element analysis. In the first-order wave diffraction analysis, the boundary-value problems governed by the Laplace equation or by the Helmholtz equation are considered. The solution methods for bounded domains and unbounded domains are described in detail. The solution process is implemented and validated by practical numerical examples. The numerical examples examined include well benchmarked problems such as wave reflection and transmission by a single horizontal structure and by two structures with a small gap, wave radiation induced by oscillating bodies in heave, sway and roll motions, wave diffraction by vertical structures with circular, elliptical, rectangular cross sections and harbour oscillation problems. The numerical results are compared with the available analytical solutions, numerical solutions with other conventional numerical methods and experimental results to demonstrate the accuracy and efficiency of the scaled boundary finite-element method. The computed results show that the scaled boundary finite-element method is able to accurately model the singularity of velocity field near sharp corners and to satisfy the radiation condition with ease. It is worth nothing that the scaled boundary finite-element method is completely free of irregular frequency problem that the Green's function methods often suffer from. For the second-order wave diffraction problem, this thesis develops solution schemes for both monochromatic wave and bichromatic wave cases, based on the analytical expression of first-order solution in the radial direction. It is found that the scaled boundary finiteelement method can produce accurate results of second-order wave loads, due to its high accuracy in calculating the first-order velocity field.
6

A field and laboratory study on the dynamic response of the Eddystone lighthouse to wave loading

Banfi, Davide January 2018 (has links)
Because little was known about how the masonry lighthouses constructed during the 19th century at exposed locations around the British Isles were responding to wave action, the dynamic response of the Eddystone lighthouse under wave impacts was investigated. Like other so called 'rock lighthouses', the Eddystone lighthouse was built on top of a steep reef at a site that is fully submerged at most states of the tide. Consequently, the structure is exposed to loading by unbroken, breaking and broken waves. When the breaking occurs, wave loading leads to complex phenomena that cannot be described theoretically due to the unknown mixture of air and water involved during the wave-structure interaction. In addition, breaking waves are generally distinguished from unbroken and broken wave due to the fact that they cause impulsive loads. As a consequence, the load effects on the structural response require a dynamic analysis. In this investigation the dynamic response of the Eddystone lighthouse is investigated both in the field and by means of a small-scale model mounted in a laboratory wave channel. In particular, field data obtained by the use of geophones, cameras and a wave buoy are presented together with wave loading information obtained during the laboratory tests under controlled conditions. More than 3000 structural events were recorded during the exceptional sequence of winter storms that hit the South-West of England in 2013/2014. The geophone signals, which provide the structural response in terms of velocity data, are differentiated and integrated in order to obtain accelerations and displacements respectively. Dynamic responses show different behaviours and higher structural frequencies, which are related to more impulsive loads, tend to exhibit a predominant sharp peak in velocity time histories. As a consequence, the structural responses have been classified into four types depending on differences of ratio peaks in the time histories and spectra. Field video images indicate that higher structural frequencies are usually associated with loads caused by plunging waves that break on or just in front of the structure. However, higher structural velocities and accelerations do not necessarily lead to the largest displacements of around a tenth of mm. Thus, while the impulsive nature of the structural response depends on the type of wave impact, the magnitude of the structural deflections is strongly affected by both elevation of the wave force on the structure and impact duration, as suggested by structural numerical simulations and laboratory tests respectively. The latter demonstrate how the limited water depth strongly affects the wave loading. In particular, only small plunging waves are able to break on or near the structure and larger waves that break further away can impose a greater overall impulse due to the longer duration of the load. As a consequence of the depth limited conditions, broken waves can generate significant deflections in the case of the Eddystone lighthouse. However, maximum accelerations of about 0.1g are related to larger plunging waves that are still able to hit the lighthouse with a plunging jet. When compared to the Iribarren number, the dimensionless irregular momentum flux proposed by Hughes is found to be a better indicator concerning the occurrence of the structural response types. This is explained by the fact that the Iribarren number does not to take into account the effects of the wide tidal range at the Eddystone reef, which has a strong influence on the location of the breaking point with respect to the lighthouse. Finally, maximum run up were not able to rise up to the top of the lighthouse model during the laboratory tests, despite this having been observed in the field. As a consequence, the particular configuration of the Eddystone reef and the wind could have a considerable bearing and exceptional values of the run up, greater than 40 m, cannot be excluded in the field.

Page generated in 0.0606 seconds