1 |
Experimental study of wave forces and de-draggers device for vertical and horizontal cylindersXie, Rong-Hua 26 July 2001 (has links)
ABSTRACT
The purpose of the study is to design and test the devices(de-draggers) that can be incorporated to cylinders to reduce wave forces¡C
Two force gauges have been designed to measure simultaneously the x- and z-direction wave forces, especially, for a horizontal cylinder, and the x- and y-direction wave forces, for a vertical cylinder¡C
A device with water-drop shape has been fabricated to streamline the flow pattern around the cylinder that can effectively reduce the wake-induced wave force¡C
The study will be performed in a wave tank by varying wave conditions and the positions of the cylinder¡CWave forces on the vertical and horizontal cylinders will be measured and compared for the cylinders with and without de-draggers,¡@respectively¡C
|
2 |
OSIRIS-REx Surface Imaging to Constrain Properties of the Asteroid (101955) BennuAllen, Alicia 01 January 2022 (has links) (PDF)
This study used images taken from the OSIRIS-REx spacecraft sample-return mission and projected onto a three-dimensional shape model to determine surface properties of the asteroid (101955) Bennu. Two major projects were completed. For the first project, images of the pre-sampled Nightingale site and post-sampled Nightingale were compared to determine how the TAGSAM sampling maneuver effected the surface of the asteroid directly at the sampling site and in the surrounding area. This analysis demonstrated how spacecraft can potentially affect a small body during this and future sample-return missions. For the second project, several craters on Bennu’s surface were selected and all of the boulders within their rims and up to one crater radius outward from their rims were counted and measured. The interior and exterior of all craters were compared which determined that there is a pattern that supports the existence of a subsurface layer of finer-grained material which could be responsible for cohesion on Bennu and potentially other rubble-pile asteroids
|
3 |
Preliminary design of spacecraft trajectories for missions to outer planets and small bodiesLantukh, Demyan Vasilyevich 17 September 2015 (has links)
Multiple gravity assist (MGA) spacecraft trajectories can be difficult to find, an intractable problem to solve completely. However, these trajectories have enormous benefits for missions to challenging destinations such as outer planets and primitive bodies. Techniques are presented to aid in solving this problem with a global search tool and additional investigation into one particular proximity operations option is discussed. Explore is a global grid-search MGA trajectory pathsolving tool. An efficient sequential tree search eliminates v∞ discontinuities and prunes trajectories. Performance indices may be applied to further prune the search, with multiple objectives handled by allowing these indices to change between trajectory segments and by pruning with a Pareto-optimality ranking. The MGA search is extended to include deep space maneuvers (DSM), v∞ leveraging transfers (VILT) and low-thrust (LT) transfers. In addition, rendezvous or nπ sequences can patch the transfers together, enabling automatic augmentation of the MGA sequence. Details of VILT segments and nπ sequences are presented: A boundaryvalue problem (BVP) VILT formulation using a one-dimensional root-solve enables inclusion of an efficient class of maneuvers with runtime comparable to solving ballistic transfers. Importantly, the BVP VILT also allows the calculation of velocity-aligned apsidal maneuvers (VAM), including inter-body transfers and orbit insertion maneuvers. A method for automated inclusion of nπ transfers such as resonant returns and back-flip trajectories is introduced: a BVP is posed on the v∞ sphere and solved with one or more nπ transfers – which may additionally fulfill specified science objectives. The nπ sequence BVP is implemented within the broader search, combining nπ and other transfers in the same trajectory. To aid proximity operations around small bodies, analytical methods are used to investigate stability regions in the presence of significant solar radiation pressure (SRP) and body oblateness perturbations. The interactions of these perturbations allow for heliotropic orbits, a stable family of low-altitude orbits investigated in detail. A novel constrained double-averaging technique analytically determines inclined heliotropic orbits. This type of knowledge is uniquely valuable for small body missions where SRP and irregular body shape are very important and where target selection is often a part of the mission design.
|
4 |
Trajectory Optimisation of a Spacecraft Swarm Maximising Gravitational Signal / Banoptimering av en Rymdfarkostsvärm för att Maximera GravitationsignalenMaråk, Rasmus January 2023 (has links)
Proper modelling of the gravitational fields of irregularly shaped asteroids and comets is an essential yet challenging part of any spacecraft visit and flyby to these bodies. Accurate density representations provide crucial information for proximity missions, which rely heavily on it to design safe and efficient trajectories. This work explores using a spacecraft swarm to maximise the measured gravitational signal in a hypothetical mission around the comet 67P/Churyumov-Gerasimenko. Spacecraft trajectories are simultaneously computed and evaluated using a high-order numerical integrator and an evolutionary optimisation method to maximise overall signal return. The propagation is based on an open-source polyhedral gravity model using a detailed mesh of 67P/C-G and considers the comet’s sidereal rotation. We compare performance on various mission scenarios using one and four spacecraft. The results show that the swarm achieved an expected increase in coverage over a single spacecraft when considering a fixed mission duration. However, optimising for a single spacecraft results in a more effective trajectory. The impact of dimensionality is further studied by introducing an iterative local search strategy, resulting in a generally improved robustness for finding efficient solutions. Overall, this work serves as a testbed for designing a set of trajectories in particularly complex gravitational environments, balancing measured signals and risks in a swarm scenario. / En korrekt modellering av de gravitationsfält som uppstår runt irreguljärt formade asteroider och kometer är en avgörande och utmanande del för alla uppdrag till likartade himlakroppar. Exakta densitetsrepresentationer tillhandahåller viktig information för att säkerställa säkra och effektiva rutter för särsilt närgående rymdfarkoster. I denna studie utforskar vi användningen av en svärm av rymdfarkoster för att maximera den uppmätta gravitationssignalen i ett hypotetisk uppdrag runt kometen 67P/Churyumov-Gerasimenko. Rymdfarkosternas banor beräknas och utvärderas i parallella scheman med hjälp av en högre ordningens numerisk integration och en evolutionär optimeringsmetod i syfte att maximera den totala uppmätta signalen. Beräkningarna baseras på en öppen källkod för en polyhedral gravitationsmodell som använder ett detaljerat rutnät av triangulära polygoner för att representera 67P/C-G och beaktar kometens egna rotation. Vi jämför sedan prestanden för olika uppdragscenarier med en respektive fyra rymdfarkoster. Resultaten visar att svärmen uppnådde en förväntad ökning i täckning jämfört med en enskild rymdfarkost under en fast uppdragsvaraktighet. Dock resulterar optimering för en enskild rymdfarkost i en mer effektiv bana. Påverkan av dimensionshöjningen hos oberoende variabler studeras vidare genom att introducera en iterativ lokal sökstrategi, vilket resulterar i en generellt förbättrad robusthet samt effektivare lösningar. Sammantaget fungerar detta arbete som en testbädd för att studera och utforma rymdfarkosters banor i särskilt komplexa gravitationsmiljöer, samt för att balansera uppmätta signaler och risker i ett svärmscenario.
|
Page generated in 0.0435 seconds