41 |
The fluid dynamic study of ducted and unducted Wells turbines in undirectional and oscillatory flowsButtgereit, Ruediger Volker January 1998 (has links)
No description available.
|
42 |
Power Spectral Analysis of a Forcemain Failure Caused By WaterhammerHennessy, Robert R. 06 1900 (has links)
<p> The failure of the Ancaster forcemain was thought to be related to waterhammer effects. The sequence of breakages of the main are reviewed. A series of pressure recordings were made on the forcemain, leading up to and including collapse. The recordings comprise a unique data set.</p> <p> These pressure recordings were digitized and subjected to power spectral analysis. The power spectra pointed out several significant events that were not evident from the pressure record alone.</p> <p> These included the fact that the original break occurred in the forcemain several days prior to its ultimate collapse and discovery on the surface. It was also determined that the break in the pipe was due to the apparent merging of the primary waterhammer wave with an existing but gradually changing lower frequency wave. This second wave was associated with rigid column motion and gradually increased its frequency. The resultant wave carried sufficient energy to cause the ultimate failure of the evidently already damaged forcemain.</p> <p> Power spectral analysis proved useful as a method for analysing waterhammer effects in a forcemain complicated by column separation, leakage and vapour pocket collapse. and may be a useful way of monitoring the performance of longer pipelines.</p> / Thesis / Master of Engineering (MEngr)
|
43 |
Laboratory observations and numerical modeling of the effects of an array of wave energy convertersPorter, Aaron K. 13 August 2012 (has links)
This thesis investigates the effects of wave energy converters (WECs) on water waves through the analysis of extensive laboratory experiments, as well as subsequent numerical simulations. Data for the analysis was collected during the WEC-Array Experiments performed at the O.H. Hinsdale Wave Research Laboratory at Oregon State University, under co-operation with Columbia Power Technologies, using five 1:33 scale point-absorbing WECs. The observed wave measurement and WEC performance data sets allowed for a direct computation of power removed from the wave field for a large suite of incident wave conditions and WEC array sizes.
To numerically represent WEC effects the influence of the WECs upon the wave field was parameterized using the power absorption data from the WECs. Because a large driver of the WECs influence on the wave field is absorbed wave power by the WEC, it is reasonable to attempt a parameterization based on this process. It was of interest as to whether this parameterization, which does not account for wave scattering among other physics, could provide a good estimate of far-field effects.
Accurately predicting WEC-array effects in the far-field requires empirical validation. Previous WEC analysis and modeling studies had limited data available for model verification, and additionally had used idealized WEC performance. In the present work we develop a WEC-array parameterization for use in phase-averaged wave models (e.g. SWAN). This parametrization only considers the wave absorption effects of the WECs and the model predictions of far-field effects are compared to observations. Further testing of the SWAN model was performed against a phase-resolving model, WAMIT, to determine the significance of physics the WEC absorption parameterization does not capture, such as scattered waves. Considering the complexity of the problem, the parameterization of WECs by only power absorption is a reasonable predictor of the effect of WECs on the far field. / Graduation date: 2013
|
44 |
Wave energy converter performance modeling and cost of electricity assessment a thesis /Jarocki, Dmitri. Crockett, Robert S. January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2010. / Title from PDF title page; viewed on May 15, 2010. Major professor: Robert S. Crockett, Ph.D. "Presented to the faculty of California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree [of] Master of Science in Engineering." "March 2010." Includes bibliographical references (p. 64-65).
|
45 |
Simulation of a linear wave energy converter with different damping control strategies for improved wave energy extractionLeijon, Jennifer January 2016 (has links)
In this project, the wave energy converter (WEC) designed at Seabased AB and Uppsala University was modelled in the program MATLAB. In order to increase the average output power, the WEC should be controlled. Therefore, the simulation tool was used to investigate damping strategies where the damping coefficient was changed at different times of the wave period. The tests showed that a suitable damping strategy, matched to the sea state at the specific location of the site and the overall WEC design, increases the average output power, as well as may protect the WEC from damages. This can lead to a more sustainable WEC system, which may contribute to the increasing demand of renewable energy solutions.
|
46 |
Applicability and potential of wave power in ChinaGuo, Lihui January 2010 (has links)
<p>Wave power is renewable energy which is environmentally friendly. Unlike most of renewable energy resources, wave energy can produce power all the year. The wave energy is stored in the ocean worldwide and highly concentrated near the ocean surface. It can be captured by wave power devices. Wave power is considered as a competitive energy resource in future.</p><p> <strong></strong></p><p>Waves are generated by wind blows across the surface of sea. Wave energy is one kind of mechanical energy which will be used for electricity generation. Wave power can’t be used directly to generate electricity; at first the wave energy is converted into the other form of useful mechanical energy and then converted into electricity. Wave power has a high potential to be captured and used for generating electricity in future as the technology develops further.</p><p> </p><p>Wave energy has been used since 1890s. There is a lot of energy stored in waves. 94% energy of the ocean stored in the wave, and the other 6% is tidal energy. Only small a part of the wave power is used for commercial electricity generation today.</p><p> </p><p>The China is a developing country with a very large population which annually consume about 3073TWh electricity of which 496TWh is from renewable energy. The wave power was less than 1GWh in 2007 (reference from International Energy Agency). The World Energy Council has measured the total useful power of the ocean wave energy to be more than 2TW in the world and corresponding to 6000TWh per year. There is about 70GW useful wave power resources in China, equivalent to an annual useful wave power resource of 200TWh.</p><p> </p><p>The lowest capital cost for the wave power system is today around 0.1Euro/kWh. China will in the future focus on the development electricity generation by wave power. There will be hundreds of new wave power plant built in China during the next twenty years, and the total installed capacity will be larger than 1GW at 2030, which delivers 3TWh annually. This corresponds to less than 1 percent of the total use of electricity in China.</p><p> </p><p>This thesis focuses on the functionality, efficiency and economic pay-off of existing ocean wave power systems, as well as how easy the ocean wave power can produce electricity. Firstly it discusses the physical concepts of wave power, and then focus on the existing wave power systems around the world. It is concluded from the Chinese sea characteristics and the designed conditions of different wave power systems, that the Pelamis and Oyster wave power converters are the best suitable systems for China.</p>
|
47 |
Applicability and potential of wave power in ChinaGuo, Lihui January 2010 (has links)
Wave power is renewable energy which is environmentally friendly. Unlike most of renewable energy resources, wave energy can produce power all the year. The wave energy is stored in the ocean worldwide and highly concentrated near the ocean surface. It can be captured by wave power devices. Wave power is considered as a competitive energy resource in future. Waves are generated by wind blows across the surface of sea. Wave energy is one kind of mechanical energy which will be used for electricity generation. Wave power can’t be used directly to generate electricity; at first the wave energy is converted into the other form of useful mechanical energy and then converted into electricity. Wave power has a high potential to be captured and used for generating electricity in future as the technology develops further. Wave energy has been used since 1890s. There is a lot of energy stored in waves. 94% energy of the ocean stored in the wave, and the other 6% is tidal energy. Only small a part of the wave power is used for commercial electricity generation today. The China is a developing country with a very large population which annually consume about 3073TWh electricity of which 496TWh is from renewable energy. The wave power was less than 1GWh in 2007 (reference from International Energy Agency). The World Energy Council has measured the total useful power of the ocean wave energy to be more than 2TW in the world and corresponding to 6000TWh per year. There is about 70GW useful wave power resources in China, equivalent to an annual useful wave power resource of 200TWh. The lowest capital cost for the wave power system is today around 0.1Euro/kWh. China will in the future focus on the development electricity generation by wave power. There will be hundreds of new wave power plant built in China during the next twenty years, and the total installed capacity will be larger than 1GW at 2030, which delivers 3TWh annually. This corresponds to less than 1 percent of the total use of electricity in China. This thesis focuses on the functionality, efficiency and economic pay-off of existing ocean wave power systems, as well as how easy the ocean wave power can produce electricity. Firstly it discusses the physical concepts of wave power, and then focus on the existing wave power systems around the world. It is concluded from the Chinese sea characteristics and the designed conditions of different wave power systems, that the Pelamis and Oyster wave power converters are the best suitable systems for China.
|
48 |
Analysis and Evaluation of the Wavebox Wave Energy ConverterGotthardsson, Björn January 2010 (has links)
Increasing attention to climate change in combination with ever-growing energy consumption worldwide has boosted the demand for new green energy sources. Wave power is developing in many different branches to become part of the new era of electricity production. This thesis deals with a wave power system in its primary stages of development. The system was investigated in order to estimate its potential to produce electric power from sea waves. It is a system consisting of a moored buoy to which the energy is transferred when the wave tilts the buoy in the pitch direction. Due to the increased pitch angle, an amount of liquid contained inside the buoy is allowed to flow via ramps to an upper container, from where it flows down through a hydroelectric turbine. A computer program was used to calculate the properties of the buoy in sea waves. Another program was written in MATLAB to simulate the movements in sea waves and from a set of given parameters calculate the power output. A brief economic study was made to determine if the power output was large enough for the concept to be of financial interest to any future investors. The results show that the wave power system produced 0.9 kW in a wave climate equal to that off the coast of Hanstholm, Denmark, and 1.6 kW in a wave climate off the coast of San Diego, USA. The economic study shows that the power output needed to be improved by a factor of at least five to have a chance of being economically viable. A number of enhancements were suggested to increase the power output of the system, and further investigation could be of use to improve the concept. The created computer simulation model, as well as the results in this thesis could be valuable in any future research on the concept.
|
49 |
Life Cycle Assessment of Electricity from Wave PowerDahlsten, Hilda January 2009 (has links)
The use of ocean wave energy for electricity production has considerable potential, though it has proven to be difficult. A technology utilizing the heaving (up-and-down) motions of the waves was conceived at Uppsala University in the early 2000´s, and is being further developed for commercial use by Seabased Industry AB. The purpose of this master´s degree project was to increase the knowledge of the environmental performance of Seabased´s wave energy conversion concept and identifying possible areas of improvement. This was done by conducting a life cycle assessment (LCA) of a hypothetical prototype wave power plant. All flows of materials, energy, emissions and waste were calculated for all stages of a wave power plant´s life cycle. The potential environmental impact of these flows was then assessed, using the following impact categories: • Emission of greenhouse gases • Emission of ozone depleting gases • Emission of acidifying gases • Emission of gases that contribute to the forming of ground-level ozone • Emission of substances to water contributing to oxygen depletion (eutrophication) • Energy use (renewable and non-renewable) • Water use The methodology used was that prescribed by the ISO standard for Environmental Product Declarations (EPD) and further defined by the International EPD Programme.The potential environmental impact was calculated per kWh of wave power electricity delivered to the grid. The main result of the study is that the potential environmental impact of a wave power plant mainly stems from the manufacturing phase. In particular, the production of steel parts makes a large contribution to the overall results. Future wave power plant designs are expected to be considerably more material efficient, meaning that there are large possibilities to improve the environmental performance of this technology.
|
50 |
Study on the Electro-magnetic of Generators System Application of Floating StructureCheng, Chia-chang 15 February 2011 (has links)
For an offshore platform structure applied to wave-energy conversion system, in order to catch the maximum waves to generate more powers, similar to wind-energy power generators, a range of angles for the devices normal to the propagating direction of incident waves is required, particularly when the power converting system has directional preference. In this study, an electro-magnetic wave energy conversion device was developed and tested in a single-mooring offshore platform system. In order to find the best design parameters for the electro-magnetic generators system in various wave periods a water-tank experiment was designed and performed.
During the experimental study, both wave parameters and dimensional related parameter of the generator were under investigation. It was found in this study that the newly developed wave conversion system can work well under certain periods and height of waves. The relationships between the parameter were presented into figures.
|
Page generated in 0.0783 seconds