• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fully nonlinear wave-body interactions by a 2D potential numerical wave tank

Koo, Weoncheol 15 November 2004 (has links)
A 2D fully nonlinear Numerical Wave Tank (NWT) is developed based on the potential theory, mixed Eulerian-Lagrangian (MEL) time marching scheme, and boundary element method (BEM). Nonlinear Wave deformation and wave forces on stationary and freely floating bodies are calculated using the NWT. For verification, the computed mean, 1st, 2nd, and 3rd order wave forces on a single submerged cylinder are compared with those of Chaplin's experiment, Ogilvie's 2nd-order theory, and other nonlinear computation called high-order spectral method. Similar calculations for dual submerged cylinders are also conducted. The developed fully nonlinear NWT is also applied to the calculations of the nonlinear pressure and force of surface piercing barge type structures and these obtained results agree with experimental and theoretical results. Nonlinear waves generated by prescribed body motions, such as wedge type wave maker or land sliding in the coastal slope area, can also be simulated by the developed NWT. The generated waves are in agreement with published experimental and numerical results. Added mass and damping coefficients can also be calculated from the simulation in time domain. For the simulation of freely floating barge-type structure, only fully nonlinear time-stepping scheme can accurately produce nonlinear body motions with large floating body simulations. The acceleration potential method, which was developed by Tanizawa (1996), is known to be the most accurate, consistent and stable. Using acceleration potential method, in the present study, the series of motions and drift forces were calculated over a wide range of incident wave frequencies including resonance region. To guarantitatively compare the nonlinear contribution of free-surface and body-boundary conditions, the body-nonlinear-only case with linearized free-surface condition is separately simulated. All the floating body motions and forces are in agreement with experimental results. Finally, the NWT is extended to fully nonlinear wave-body-current interactions of freely floating bodies, which has not been published in the open literature until now.
2

Fully nonlinear wave-body interactions by a 2D potential numerical wave tank

Koo, Weoncheol 15 November 2004 (has links)
A 2D fully nonlinear Numerical Wave Tank (NWT) is developed based on the potential theory, mixed Eulerian-Lagrangian (MEL) time marching scheme, and boundary element method (BEM). Nonlinear Wave deformation and wave forces on stationary and freely floating bodies are calculated using the NWT. For verification, the computed mean, 1st, 2nd, and 3rd order wave forces on a single submerged cylinder are compared with those of Chaplin's experiment, Ogilvie's 2nd-order theory, and other nonlinear computation called high-order spectral method. Similar calculations for dual submerged cylinders are also conducted. The developed fully nonlinear NWT is also applied to the calculations of the nonlinear pressure and force of surface piercing barge type structures and these obtained results agree with experimental and theoretical results. Nonlinear waves generated by prescribed body motions, such as wedge type wave maker or land sliding in the coastal slope area, can also be simulated by the developed NWT. The generated waves are in agreement with published experimental and numerical results. Added mass and damping coefficients can also be calculated from the simulation in time domain. For the simulation of freely floating barge-type structure, only fully nonlinear time-stepping scheme can accurately produce nonlinear body motions with large floating body simulations. The acceleration potential method, which was developed by Tanizawa (1996), is known to be the most accurate, consistent and stable. Using acceleration potential method, in the present study, the series of motions and drift forces were calculated over a wide range of incident wave frequencies including resonance region. To guarantitatively compare the nonlinear contribution of free-surface and body-boundary conditions, the body-nonlinear-only case with linearized free-surface condition is separately simulated. All the floating body motions and forces are in agreement with experimental results. Finally, the NWT is extended to fully nonlinear wave-body-current interactions of freely floating bodies, which has not been published in the open literature until now.
3

Modélisation de fermes de systèmes houlomoteurs : effets d’interactions entre systèmes à l’échelle de la ferme et impact sur le climat de vagues à l'échelle régionale / Numerical modeling of arrays of wave energy converters : interaction effects between units at the scale of an array and impact on wave climatology at the regional scale

Charrayre, François 17 September 2015 (has links)
Cette thèse porte sur le développement d'un ensemble d'outils numériques destinés à simuler différents aspects des interactions vagues-structure appliquées à l'exploitation des systèmes de récupération de l'énergie des vagues (SREV). Elle a été réalisée dans le cadre du projet ANR Monacorev (projet ANR11-MONU-018-01, 2012-2015).L'objectif est de pouvoir traiter la question des interactions à l'échelle d'une ferme de SREVs (≈ 1 km), et d'étudier l'impact d'une ou plusieurs fermes de SREVs à l'échelle régionale (≈ 10km) sur le champ de vague total. Des méthodes de modélisation et de simulation adaptées sont développées pour chacune de ces deux échelles. Jusqu'à présent, les interactions entre les SREVs étaient bien souvent étudiées en considérant que le fond était plat (l'influence d'un fond variable sur le champ de houle au niveau de la ferme étant alors jugé négligeable), ce qui permet de calculer facilement et rapidement le champ de vagues et les interactions grâce à l'utilisation de la théorie linéaire potentielle. Une application pratique de cette méthode est le calcul du rendement d'une ferme de SREVs, et l'optimisation de leurs positions relatives au sein d'un parc. Dans le cadre de la théorie linéaire, cette thèse propose une méthodologie de couplage originale entre un code de tenue à la mer (Aquaplus) et un code de propagation de la houle en zone côtière (Artemis), laquelle a été développée et qualifiée. Les simulations réalisées montrent que, pour une configuration de ferme de SREVs donnée, on ne peut pas toujours négliger les effets de la bathymétrie. Par exemple, la présence d'une plage de pente 10% au large d'une ferme de SREV peut modifier la hauteur des vagues de manière significative, et affecter ainsi le rendement de la ferme de manière significative par rapport au cas où le fond est uniformément plat. A l'échelle côtière régionale, il est aussi intéressant de simuler et prédire l'impact de fermes de SREVs sur le champ de vagues. Pour des raisons d'efficacité, une approche à phases moyennées de modélisation des vagues a été privilégiée, fondée sur le code spectral d'états de mer Tomawac. La représentation des effets d'un SREV à travers l'utilisation d'un terme puits (concept permettant de soustraire au spectre d'énergie d'état de mer local l'énergie correspondant à celle absorbée par le SREV), bien qu'incomplète du fait que les effets de radiation/diffraction ne sont pas pris en compte, a été étudiée et testée. Une nouvelle méthodologie prenant en compte ces effets dans un code spectral est présentée ici et testée, avec l'objectif de pallier à ces limitations. Les discussions sur la validité de deux approches permettent d'esquisser des pistes de développements ultérieurs pour la représentation des fermes de SREV à l'échelle régionale / This thesis focuses on the development of a set of numerical tools to simulate different aspects of the wave-body interactions applied to the exploitation of wave energy converters (WEC). It was conducted under the ANR Monacorev project (project-ANR11 MONU-018-01, 2012-2015).The objective is to address the issue of the interactions at the scale of a farm of WECs (≈ 1 km), and to study the impact of one or more WEC farms at the regional scale (≈ 10km ) on the total wave field. Modeling and simulation methods adapted for each of these two scales are developed. Until now, the interactions between WECs was often studied by considering that the bottom was flat (the influence of a variable bathymetry on the wave field at the farm site being considered to be negligible), allowing to easily and quickly calculate the wave field and interactions through the use of linear potential theory. A practical application of this method is the yield estimation for a WEC farm and the optimization of the WEC position within a park. In the framework of the linear theory, this thesis proposes an original coupling methodology between a seakeeping (Aquaplus) and a wave propagation code in coastal areas (Artemis), which was developed and qualified. Simulations show that, for a given WEC farm configuration, effects of the bathymetry cannot systematically ignored. For example, the presence of a 10% slope close to a WEC farm can significantly modify the wave height, and thus affect the performance of the farm by several percent compared to the case with a uniformly flat bottom. At the regional coastal scale, it is also interesting to simulate and predict the impact of WEC farms on the wave field. At this scale, for efficiency reasons, a phase-averaged simulation of waves was preferred, based on the sea state spectral code TOMAWAC. The representation of the effects of a WEC through the use of a sink-term (concept for subtracting the energy equivalent to that absorbed by the WEC to the sea state energy spectrum), though incomplete due to the fact that the scattering effects are not taken into account, has been studied and tested. A new methodology taking into account these effects in a spectral code is presented here and tested with the aim to overcome these limitations. Discussions on the validity of these approaches allow us to propose possible future developments for the modeling of WEC farm at the regional scale
4

Modélisation de fermes de systèmes houlomoteurs : effets d’interactions entre systèmes à l’échelle de la ferme et impact sur le climat de vagues à l'échelle régionale / Numerical modeling of arrays of wave energy converters : interaction effects between units at the scale of an array and impact on wave climatology at the regional scale

Charrayre, François 17 September 2015 (has links)
Cette thèse porte sur le développement d'un ensemble d'outils numériques destinés à simuler différents aspects des interactions vagues-structure appliquées à l'exploitation des systèmes de récupération de l'énergie des vagues (SREV). Elle a été réalisée dans le cadre du projet ANR Monacorev (projet ANR11-MONU-018-01, 2012-2015).L'objectif est de pouvoir traiter la question des interactions à l'échelle d'une ferme de SREVs (≈ 1 km), et d'étudier l'impact d'une ou plusieurs fermes de SREVs à l'échelle régionale (≈ 10km) sur le champ de vague total. Des méthodes de modélisation et de simulation adaptées sont développées pour chacune de ces deux échelles. Jusqu'à présent, les interactions entre les SREVs étaient bien souvent étudiées en considérant que le fond était plat (l'influence d'un fond variable sur le champ de houle au niveau de la ferme étant alors jugé négligeable), ce qui permet de calculer facilement et rapidement le champ de vagues et les interactions grâce à l'utilisation de la théorie linéaire potentielle. Une application pratique de cette méthode est le calcul du rendement d'une ferme de SREVs, et l'optimisation de leurs positions relatives au sein d'un parc. Dans le cadre de la théorie linéaire, cette thèse propose une méthodologie de couplage originale entre un code de tenue à la mer (Aquaplus) et un code de propagation de la houle en zone côtière (Artemis), laquelle a été développée et qualifiée. Les simulations réalisées montrent que, pour une configuration de ferme de SREVs donnée, on ne peut pas toujours négliger les effets de la bathymétrie. Par exemple, la présence d'une plage de pente 10% au large d'une ferme de SREV peut modifier la hauteur des vagues de manière significative, et affecter ainsi le rendement de la ferme de manière significative par rapport au cas où le fond est uniformément plat. A l'échelle côtière régionale, il est aussi intéressant de simuler et prédire l'impact de fermes de SREVs sur le champ de vagues. Pour des raisons d'efficacité, une approche à phases moyennées de modélisation des vagues a été privilégiée, fondée sur le code spectral d'états de mer Tomawac. La représentation des effets d'un SREV à travers l'utilisation d'un terme puits (concept permettant de soustraire au spectre d'énergie d'état de mer local l'énergie correspondant à celle absorbée par le SREV), bien qu'incomplète du fait que les effets de radiation/diffraction ne sont pas pris en compte, a été étudiée et testée. Une nouvelle méthodologie prenant en compte ces effets dans un code spectral est présentée ici et testée, avec l'objectif de pallier à ces limitations. Les discussions sur la validité de deux approches permettent d'esquisser des pistes de développements ultérieurs pour la représentation des fermes de SREV à l'échelle régionale / This thesis focuses on the development of a set of numerical tools to simulate different aspects of the wave-body interactions applied to the exploitation of wave energy converters (WEC). It was conducted under the ANR Monacorev project (project-ANR11 MONU-018-01, 2012-2015).The objective is to address the issue of the interactions at the scale of a farm of WECs (≈ 1 km), and to study the impact of one or more WEC farms at the regional scale (≈ 10km ) on the total wave field. Modeling and simulation methods adapted for each of these two scales are developed. Until now, the interactions between WECs was often studied by considering that the bottom was flat (the influence of a variable bathymetry on the wave field at the farm site being considered to be negligible), allowing to easily and quickly calculate the wave field and interactions through the use of linear potential theory. A practical application of this method is the yield estimation for a WEC farm and the optimization of the WEC position within a park. In the framework of the linear theory, this thesis proposes an original coupling methodology between a seakeeping (Aquaplus) and a wave propagation code in coastal areas (Artemis), which was developed and qualified. Simulations show that, for a given WEC farm configuration, effects of the bathymetry cannot systematically ignored. For example, the presence of a 10% slope close to a WEC farm can significantly modify the wave height, and thus affect the performance of the farm by several percent compared to the case with a uniformly flat bottom. At the regional coastal scale, it is also interesting to simulate and predict the impact of WEC farms on the wave field. At this scale, for efficiency reasons, a phase-averaged simulation of waves was preferred, based on the sea state spectral code TOMAWAC. The representation of the effects of a WEC through the use of a sink-term (concept for subtracting the energy equivalent to that absorbed by the WEC to the sea state energy spectrum), though incomplete due to the fact that the scattering effects are not taken into account, has been studied and tested. A new methodology taking into account these effects in a spectral code is presented here and tested with the aim to overcome these limitations. Discussions on the validity of these approaches allow us to propose possible future developments for the modeling of WEC farm at the regional scale

Page generated in 0.1398 seconds