• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] LOW RATE CODECS OPERATING IN NOISY ENVIRONMENT AND IP NETWORKS / [pt] CODIFICADORES DE VOZ A BAIXAS TAXAS OPERANDO EM AMBIENTES RUIDOSOS E REDES IP

FRED BERKOWICZ BORGES 19 April 2005 (has links)
[pt] Este trabalho examina o impacto da quantização vetorial das LSFs sobre a qualidade de voz em codecs a baixas taxas operando em redes IP e em diversos ambientes ruidosos. São considerados diferentes esquemas de quantização vetorial (QV) multiestágio com busca em árvore envolvendo QV sem memória e QV preditiva chaveada com 2 e 4 classes. A distribuição de perda de quadros em redes IP foi modelada de acordo com o Modelo de Gilbert e a avaliação de desempenho foi realizada tanto em termos das distorções espectrais como da qualidade de voz resultante de codecs a baixas taxas. Ainda neste trabalho, foi avaliada a qualidade da voz codificada após a utilização de uma técnica de supressão de ruído baseada em transformadas wavelets (Wavelet Denoising). / [en] This work investigates the impact of LSF vector quantisation over the voice quality in low rate codecs operating in IP networks. Tree-structured multistage vector quantisation (VQ) schemes involving memoryless VQ and switched-predictive VQ with 2 and 4 classes are considered. The packet loss frame distribution in IP networks was modelled according to the Gilbert Model and the performance was carried out both in terms of spectral distortions and the speech quality at the out put of low rate codecs. In this work, we also evaluated the quality of the coded speech after employing Wavelet Denoising.
2

Wavelet Based Denoising Techniques For Improved DOA Estimation And Source Localisation

Sathish, R 05 1900 (has links) (PDF)
No description available.
3

Improved Direction Of Arrival Estimation By Nonlinear Wavelet Denoising And Application To Source Localization In Ocean

Pramod, N C 12 1900 (has links) (PDF)
No description available.
4

MALDI-TOF MS Data Processing Using Wavelets, Splines and Clustering Techniques.

Chen, Shuo 18 December 2004 (has links) (PDF)
Mass Spectrometry, especially matrix assisted laser desorption/ionization (MALDI) time of flight (TOF), is emerging as a leading technique in the proteomics revolution. It can be used to find disease-related protein patterns in mixtures of proteins derived from easily obtained samples. In this paper, a novel algorithm for MALDI-TOF MS data processing is developed. The software design includes the application of splines for data smoothing and baseline correction, wavelets for adaptive denoising, multivariable statistics techniques such as clustering analysis, and signal processing techniques to evaluate the complicated biological signals. A MatLab implementation shows the processing steps consecutively including step-interval unification, adaptive wavelet denoising, baseline correction, normalization, and peak detection and alignment for biomarker discovery.
5

Contribution à la détection et à l'analyse des signaux EEG épileptiques : débruitage et séparation de sources / Contribution to the detection and analysis of epileptic EEG signals : denoising and source separation

Romo Vazquez, Rebeca del Carmen 24 February 2010 (has links)
L'objectif principal de cette thèse est le pré-traitement des signaux d'électroencéphalographie (EEG). En particulier, elle vise à développer une méthodologie pour obtenir un EEG dit "propre" à travers l'identification et l'élimination des artéfacts extra-cérébraux (mouvements oculaires, clignements, activité cardiaque et musculaire) et du bruit. Après identification, les artéfacts et le bruit doivent être éliminés avec une perte minimale d'information, car dans le cas d'EEG, il est de grande importance de ne pas perdre d'information potentiellement utile à l'analyse (visuelle ou automatique) et donc au diagnostic médical. Plusieurs étapes sont nécessaires pour atteindre cet objectif : séparation et identification des sources d'artéfacts, élimination du bruit de mesure et reconstruction de l'EEG "propre". A travers une approche de type séparation aveugle de sources (SAS), la première partie vise donc à séparer les signaux EEG dans des sources informatives cérébrales et des sources d'artéfacts extra-cérébraux à éliminer. Une deuxième partie vise à classifier et éliminer les sources d'artéfacts et elle consiste en une étape de classification supervisée. Le bruit de mesure, quant à lui, il est éliminé par une approche de type débruitage par ondelettes. La mise en place d'une méthodologie intégrant d'une manière optimale ces trois techniques (séparation de sources, classification supervisée et débruitage par ondelettes) constitue l'apport principal de cette thèse. La méthodologie développée, ainsi que les résultats obtenus sur une base de signaux d'EEG réels (critiques et inter-critiques) importante, sont soumis à une expertise médicale approfondie, qui valide l'approche proposée / The goal of this research is the electroencephalographic (EEG) signals preprocessing. More precisely, we aim to develop a methodology to obtain a "clean" EEG through the extra- cerebral artefacts (ocular movements, eye blinks, high frequency and cardiac activity) and noise identification and elimination. After identification, the artefacts and noise must be eliminated with a minimal loss of cerebral activity information, as this information is potentially useful to the analysis (visual or automatic) and therefore to the medial diagnosis. To accomplish this objective, several pre-processing steps are needed: separation and identification of the artefact sources, noise elimination and "clean" EEG reconstruction. Through a blind source separation (BSS) approach, the first step aims to separate the EEG signals into informative and artefact sources. Once the sources are separated, the second step is to classify and to eliminate the identified artefacts sources. This step implies a supervised classification. The EEG is reconstructed only from informative sources. The noise is finally eliminated using a wavelet denoising approach. A methodology ensuring an optimal interaction of these three techniques (BSS, classification and wavelet denoising) is the main contribution of this thesis. The methodology developed here, as well the obtained results from an important real EEG data base (ictal and inter-ictal) is subjected to a detailed analysis by medical expertise, which validates the proposed approach
6

Advanced Computational Methods for Power System Data Analysis in an Electricity Market

Ke Meng Unknown Date (has links)
The power industry has undergone significant restructuring throughout the world since the 1990s. In particular, its traditional, vertically monopolistic structures have been reformed into competitive markets in pursuit of increased efficiency in electricity production and utilization. However, along with market deregulation, power systems presently face severe challenges. One is power system stability, a problem that has attracted widespread concern because of severe blackouts experienced in the USA, the UK, Italy, and other countries. Another is that electricity market operation warrants more effective planning, management, and direction techniques due to the ever expanding large-scale interconnection of power grids. Moreover, many exterior constraints, such as environmental protection influences and associated government regulations, now need to be taken into consideration. All these have made existing challenges even more complex. One consequence is that more advanced power system data analysis methods are required in the deregulated, market-oriented environment. At the same time, the computational power of modern computers and the application of databases have facilitated the effective employment of new data analysis techniques. In this thesis, the reported research is directed at developing computational intelligence based techniques to solve several power system problems that emerge in deregulated electricity markets. Four major contributions are included in the thesis: a newly proposed quantum-inspired particle swarm optimization and self-adaptive learning scheme for radial basis function neural networks; online wavelet denoising techniques; electricity regional reference price forecasting methods in the electricity market; and power system security assessment approaches for deregulated markets, including fault analysis, voltage profile prediction under contingencies, and machine learning based load shedding scheme for voltage stability enhancement. Evolutionary algorithms (EAs) inspired by biological evolution mechanisms have had great success in power system stability analysis and operation planning. Here, a new quantum-inspired particle swarm optimization (QPSO) is proposed. Its inspiration stems from quantum computation theory, whose mechanism is totally different from those of original EAs. The benchmark data sets and economic load dispatch research results show that the QPSO improves on other versions of evolutionary algorithms in terms of both speed and accuracy. Compared to the original PSO, it greatly enhances the searching ability and efficiently manages system constraints. Then, fuzzy C-means (FCM) and QPSO are applied to train radial basis function (RBF) neural networks with the capacity to auto-configure the network structures and obtain the model parameters. The benchmark data sets test results suggest that the proposed training algorithms ensure good performance on data clustering, also improve training and generalization capabilities of RBF neural networks. Wavelet analysis has been widely used in signal estimation, classification, and compression. Denoising with traditional wavelet transforms always exhibits visual artefacts because of translation-variant. Furthermore, in most cases, wavelet denoising of real-time signals is actualized via offline processing which limits the efficacy of such real-time applications. In the present context, an online wavelet denoising method using a moving window technique is proposed. Problems that may occur in real-time wavelet denoising, such as border distortion and pseudo-Gibbs phenomena, are effectively solved by using window extension and window circle spinning methods. This provides an effective data pre-processing technique for the online application of other data analysis approaches. In a competitive electricity market, price forecasting is one of the essential functions required of a generation company and the system operator. It provides critical information for building up effective risk management plans by market participants, especially those companies that generate and retail electrical power. Here, an RBF neural network is adopted as a predictor of the electricity market regional reference price in the Australian national electricity market (NEM). Furthermore, the wavelet denoising technique is adopted to pre-process the historical price data. The promising network prediction performance with respect to price data demonstrates the efficiency of the proposed method, with real-time wavelet denoising making feasible the online application of the proposed price prediction method. Along with market deregulation, power system security assessment has attracted great concern from both academic and industry analysts, especially after several devastating blackouts in the USA, the UK, and Russia. This thesis goes on to propose an efficient composite method for cascading failure prevention comprising three major stages. Firstly, a hybrid method based on principal component analysis (PCA) and specific statistic measures is used to detect system faults. Secondly, the RBF neural network is then used for power network bus voltage profile prediction. Tests are carried out by means of the “N-1” and “N-1-1” methods applied in the New England power system through PSS/E dynamic simulations. Results show that system faults can be reliably detected and voltage profiles can be correctly predicted. In contrast to traditional methods involving phase calculation, this technique uses raw data from time domains and is computationally inexpensive in terms of both memory and speed for practical applications. This establishes a connection between power system fault analysis and cascading analysis. Finally, a multi-stage model predictive control (MPC) based load shedding scheme for ensuring power system voltage stability is proposed. It has been demonstrated that optimal action in the process of load shedding for voltage stability during emergencies can be achieved as a consequence. Based on above discussions, a framework for analysing power system voltage stability and ensuring its enhancement is proposed, with such a framework able to be used as an effective means of cascading failure analysis. In summary, the research reported in this thesis provides a composite framework for power system data analysis in a market environment. It covers advanced techniques of computational intelligence and machine learning, also proposes effective solutions for both the market operation and the system stability related problems facing today’s power industry.
7

Ultra-wideband channel estimation with application towards time-of-arrival estimation

Liu, Ted C.-K. 25 August 2009 (has links)
Ultra-wideband (UWB) technology is the next viable solution for applications in wireless personal area network (WPAN), body area network (BAN) and wireless sensor network (WSN). However, as application evolves toward a more realistic situation, wideband channel characteristics such as pulse distortion must be accounted for in channel modeling. Furthermore, application-oriented services such as ranging and localization demand fast prototyping, real-time processing of measured data, and good low signal-to-noise ratio (SNR) performance. Despite the tremendous effort being vested in devising new receivers by the global research community, channel-estimating Rake receiver is still one of the most promising receivers that can offer superior performance to the suboptimal counterparts. However, acquiring Nyquist-rate samples costs substantial power and resource consumption and is a major obstacle to the feasible implementation of the asymptotic maximum likelihood (ML) channel estimator. In this thesis, we address all three aspects of the UWB impulse radio (UWB-IR), in three separate contributions. First, we study the {\it a priori} dependency of the CLEAN deconvolution with real-world measurements, and propose a high-resolution, multi-template deconvolution algorithm to enhance the channel estimation accuracy. This algorithm is shown to supersede its predecessors in terms of accuracy, energy capture and computational speed. Secondly, we propose a {\it regularized} least squares time-of-arrival (ToA) estimator with wavelet denoising to the problem of ranging and localization with UWB-IR. We devise a threshold selection framework based on the Neyman-Pearson (NP) criterion, and show the robustness of our algorithm by comparing with other ToA algorithms in both computer simulation and ranging measurements when advanced digital signal processing (DSP) is available. Finally, we propose a low-complexity ML (LC-ML) channel estimator to fully exploit the multipath diversity with Rake receiver with sub-Nyquist rate sampling. We derive the Cram\'er-Rao Lower Bound (CRLB) for the LC-ML, and perform simulation to compare our estimator with both the $\ell_1$-norm minimization technique and the conventional ML estimator.
8

Advanced Computational Methods for Power System Data Analysis in an Electricity Market

Ke Meng Unknown Date (has links)
The power industry has undergone significant restructuring throughout the world since the 1990s. In particular, its traditional, vertically monopolistic structures have been reformed into competitive markets in pursuit of increased efficiency in electricity production and utilization. However, along with market deregulation, power systems presently face severe challenges. One is power system stability, a problem that has attracted widespread concern because of severe blackouts experienced in the USA, the UK, Italy, and other countries. Another is that electricity market operation warrants more effective planning, management, and direction techniques due to the ever expanding large-scale interconnection of power grids. Moreover, many exterior constraints, such as environmental protection influences and associated government regulations, now need to be taken into consideration. All these have made existing challenges even more complex. One consequence is that more advanced power system data analysis methods are required in the deregulated, market-oriented environment. At the same time, the computational power of modern computers and the application of databases have facilitated the effective employment of new data analysis techniques. In this thesis, the reported research is directed at developing computational intelligence based techniques to solve several power system problems that emerge in deregulated electricity markets. Four major contributions are included in the thesis: a newly proposed quantum-inspired particle swarm optimization and self-adaptive learning scheme for radial basis function neural networks; online wavelet denoising techniques; electricity regional reference price forecasting methods in the electricity market; and power system security assessment approaches for deregulated markets, including fault analysis, voltage profile prediction under contingencies, and machine learning based load shedding scheme for voltage stability enhancement. Evolutionary algorithms (EAs) inspired by biological evolution mechanisms have had great success in power system stability analysis and operation planning. Here, a new quantum-inspired particle swarm optimization (QPSO) is proposed. Its inspiration stems from quantum computation theory, whose mechanism is totally different from those of original EAs. The benchmark data sets and economic load dispatch research results show that the QPSO improves on other versions of evolutionary algorithms in terms of both speed and accuracy. Compared to the original PSO, it greatly enhances the searching ability and efficiently manages system constraints. Then, fuzzy C-means (FCM) and QPSO are applied to train radial basis function (RBF) neural networks with the capacity to auto-configure the network structures and obtain the model parameters. The benchmark data sets test results suggest that the proposed training algorithms ensure good performance on data clustering, also improve training and generalization capabilities of RBF neural networks. Wavelet analysis has been widely used in signal estimation, classification, and compression. Denoising with traditional wavelet transforms always exhibits visual artefacts because of translation-variant. Furthermore, in most cases, wavelet denoising of real-time signals is actualized via offline processing which limits the efficacy of such real-time applications. In the present context, an online wavelet denoising method using a moving window technique is proposed. Problems that may occur in real-time wavelet denoising, such as border distortion and pseudo-Gibbs phenomena, are effectively solved by using window extension and window circle spinning methods. This provides an effective data pre-processing technique for the online application of other data analysis approaches. In a competitive electricity market, price forecasting is one of the essential functions required of a generation company and the system operator. It provides critical information for building up effective risk management plans by market participants, especially those companies that generate and retail electrical power. Here, an RBF neural network is adopted as a predictor of the electricity market regional reference price in the Australian national electricity market (NEM). Furthermore, the wavelet denoising technique is adopted to pre-process the historical price data. The promising network prediction performance with respect to price data demonstrates the efficiency of the proposed method, with real-time wavelet denoising making feasible the online application of the proposed price prediction method. Along with market deregulation, power system security assessment has attracted great concern from both academic and industry analysts, especially after several devastating blackouts in the USA, the UK, and Russia. This thesis goes on to propose an efficient composite method for cascading failure prevention comprising three major stages. Firstly, a hybrid method based on principal component analysis (PCA) and specific statistic measures is used to detect system faults. Secondly, the RBF neural network is then used for power network bus voltage profile prediction. Tests are carried out by means of the “N-1” and “N-1-1” methods applied in the New England power system through PSS/E dynamic simulations. Results show that system faults can be reliably detected and voltage profiles can be correctly predicted. In contrast to traditional methods involving phase calculation, this technique uses raw data from time domains and is computationally inexpensive in terms of both memory and speed for practical applications. This establishes a connection between power system fault analysis and cascading analysis. Finally, a multi-stage model predictive control (MPC) based load shedding scheme for ensuring power system voltage stability is proposed. It has been demonstrated that optimal action in the process of load shedding for voltage stability during emergencies can be achieved as a consequence. Based on above discussions, a framework for analysing power system voltage stability and ensuring its enhancement is proposed, with such a framework able to be used as an effective means of cascading failure analysis. In summary, the research reported in this thesis provides a composite framework for power system data analysis in a market environment. It covers advanced techniques of computational intelligence and machine learning, also proposes effective solutions for both the market operation and the system stability related problems facing today’s power industry.
9

[en] CONTINUOUS SPEECH RECOGNITION BY COMBINING MFCC AND PNCC ATTRIBUTES WITH SS, WD, MAP AND FRN METHODS OF ROBUSTNESS / [pt] RECONHECIMENTO DE VOZ CONTINUA COMBINANDO OS ATRIBUTOS MFCC E PNCC COM METODOS DE ROBUSTEZ SS, WD, MAP E FRN

CHRISTIAN DAYAN ARCOS GORDILLO 09 June 2014 (has links)
[pt] O crescente interesse por imitar o modelo que rege o processo cotidiano de comunicação humana através de maquinas tem se convertido em uma das áreas do conhecimento mais pesquisadas e de grande importância nas ultimas décadas. Esta área da tecnologia, conhecida como reconhecimento de voz, em como principal desafio desenvolver sistemas robustos que diminuam o ruído aditivo dos ambientes de onde o sinal de voz é adquirido, antes de que se esse sinal alimente os reconhecedores de voz. Por esta razão, este trabalho apresenta quatro formas diferentes de melhorar o desempenho do reconhecimento de voz contınua na presença de ruído aditivo, a saber: Wavelet Denoising e Subtração Espectral, para realce de fala e Mapeamento de Histogramas e Filtro com Redes Neurais, para compensação de atributos. Esses métodos são aplicados isoladamente e simultaneamente, afim de minimizar os desajustes causados pela inserção de ruído no sinal de voz. Alem dos métodos de robustez propostos, e devido ao fato de que os e conhecedores de voz dependem basicamente dos atributos de voz utilizados, examinam-se dois algoritmos de extração de atributos, MFCC e PNCC, através dos quais se representa o sinal de voz como uma sequência de vetores que contêm informação espectral de curtos períodos de tempo. Os métodos considerados são avaliados através de experimentos usando os software HTK e Matlab, e as bases de dados TIMIT (de vozes) e NOISEX-92 (de ruído). Finalmente, para obter os resultados experimentais, realizam-se dois tipos de testes. No primeiro caso, é avaliado um sistema de referência baseado unicamente em atributos MFCC e PNCC, mostrando como o sinal é fortemente degradado quando as razões sinal-ruıdo são menores. No segundo caso, o sistema de referência é combinado com os métodos de robustez aqui propostos, analisando-se comparativamente os resultados dos métodos quando agem isolada e simultaneamente. Constata-se que a mistura simultânea dos métodos nem sempre é mais atraente. Porem, em geral o melhor resultado é obtido combinando-se MAP com atributos PNCC. / [en] The increasing interest in imitating the model that controls the daily process of human communication trough machines has become one of the most researched areas of knowledge and of great importance in recent decades. This technological area known as voice recognition has as a main challenge to develop robust systems that reduce the noisy additive environment where the signal voice was acquired. For this reason, this work presents four different ways to improve the performance of continuous speech recognition in presence of additive noise, known as Wavelet Denoising and Spectral Subtraction for enhancement of voice, and Mapping of Histograms and Filter with Neural Networks to compensate for attributes. These methods are applied separately and simultaneously two by two, in order to minimize the imbalances caused by the inclusion of noise in voice signal. In addition to the proposed methods of robustness and due to the fact that voice recognizers depend mainly on the attributes voice used, two algorithms are examined for extracting attributes, MFCC, and PNCC, through which represents the voice signal as a sequence of vectors that contain spectral information for short periods of time. The considered methods are evaluated by experiments using the HTK and Matlab software, and databases of TIMIT (voice) and Noisex-92 (noise). Finally, for the experimental results, two types of tests were carried out. In the first case a reference system was assessed based on MFCC and PNCC attributes, only showing how the signal degrades strongly when signal-noise ratios are higher. In the second case, the reference system is combined with robustness methods proposed here, comparatively analyzing the results of the methods when they act alone and simultaneously. It is noted that simultaneous mix of methods is not always more attractive. However, in general, the best result is achieved by the combination of MAP with PNCC attributes.
10

Wavelet Based Algorithms For Spike Detection In Micro Electrode Array Recordings

Nabar, Nisseem S 06 1900 (has links)
In this work, the problem of detecting neuronal spikes or action potentials (AP) in noisy recordings from a Microelectrode Array (MEA) is investigated. In particular, the spike detection algorithms should be less complex and with low computational complexity so as to be amenable for real time applications. The use of the MEA is that it allows collection of extracellular signals from either a single unit or multiple (45) units within a small area. The noisy MEA recordings then undergo basic filtering, digitization and are presented to a computer for further processing. The challenge lies in using this data for detection of spikes from neuronal firings and extracting spatiotemporal patterns from the spike train which may allow control of a robotic limb or other neuroprosthetic device directly from the brain. The aim is to understand the spiking action of the neurons, and use this knowledge to devise efficient algorithms for Brain Machine Interfaces (BMIs). An effective BMI will require a realtime, computationally efficient implementation which can be carried out on a DSP board or FPGA system. The aim is to devise algorithms which can detect spikes and underlying spatio-temporal correlations having computational and time complexities to make a real time implementation feasible on a specialized DSP chip or an FPGA device. The time-frequency localization, multiresolution representation and analysis properties of wavelets make them suitable for analysing sharp transients and spikes in signals and distinguish them from noise resembling a transient or the spike. Three algorithms for the detection of spikes in low SNR MEA neuronal recordings are proposed: 1. A wavelet denoising method based on the Discrete Wavelet Transform (DWT) to suppress the noise power in the MEA signal or improve the SNR followed by standard thresholding techniques to detect the spikes from the denoised signal. 2. Directly thresholding the coefficients of the Stationary (Undecimated) Wavelet Transform (SWT) to detect the spikes. 3. Thresholding the output of a Teager Energy Operator (TEO) applied to the signal on the discrete wavelet decomposed signal resulting in a multiresolution TEO framework. The performance of the proposed three wavelet based algorithms in terms of the accuracy of spike detection, percentage of false positives and the computational complexity for different types of wavelet families in the presence of colored AR(5) (autoregressive model with order 5) and additive white Gaussian noise (AWGN) is evaluated. The performance is further evaluated for the wavelet family chosen under different levels of SNR in the presence of the colored AR(5) and AWGN noise. Chapter 1 gives an introduction to the concept behind Brain Machine Interfaces (BMIs), an overview of their history, the current state-of-the-art and the trends for the future. It also describes the working of the Microelectrode Arrays (MEAs). The generation of a spike in a neuron, the proposed mechanism behind it and its modeling as an electrical circuit based on the Hodgkin-Huxley model is described. An overview of some of the algorithms that have been suggested for spike detection purposes whether in MEA recordings or Electroencephalographic (EEG) signals is given. Chapter 2 describes in brief the underlying ideas that lead us to the Wavelet Transform paradigm. An introduction to the Fourier Transform, the Short Time Fourier Transform (STFT) and the Time-Frequency Uncertainty Principle is provided. This is followed by a brief description of the Continuous Wavelet Transform and the Multiresolution Analysis (MRA) property of wavelets. The Discrete Wavelet Transform (DWT) and its filter bank implementation are described next. It is proposed to apply the wavelet denoising algorithm pioneered by Donoho, to first denoise the MEA recordings followed by standard thresholding technique for spike detection. Chapter 3 deals with the use of the Stationary or Undecimated Wavelet Transform (SWT) for spike detection. It brings out the differences between the DWT and the SWT. A brief discussion of the analysis of non-stationary time series using the SWT is presented. An algorithm for spike detection based on directly thresholding the SWT coefficients without any need for reconstructing the denoised signal followed by thresholding technique as in the first method is presented. In chapter 4 a spike detection method based on multiresolution Teager Energy Operator is discussed. The Teager Energy Operator (TEO) picks up localized spikes in signal energy and thus is directly used for spike detection in many applications including R wave detection in ECG and various (alpha, beta) rhythms in EEG. Some basic properties of the TEO are discussed followed by the need for a multiresolution approach to TEO and the methods existing in literature. The wavelet decomposition and the subsampled signal involved at each level naturally lends it to a multiresolution TEO framework at the same time significantly reducing the computational complexity due the subsampled signal at each level. A wavelet-TEO algorithm for spike detection with similar accuracies as the previous two algorithms is proposed. The method proposed here differs significantly from that in literature since wavelets are used instead of time domain processing. Chapter 5 describes the method of evaluation of the three algorithms proposed in the previous chapters. The spike templates are obtained from MEA recordings, resampled and normalized for use in spike trains simulated as Poisson processes. The noise is modeled as colored autoregressive (AR) of order 5, i.e AR(5), as well as Additive White Gaussian Noise (AWGN). The noise in most human and animal MEA recordings conforms to the autoregressive model with orders of around 5. The AWGN Noise model is used in most spike detection methods in the literature. The performance of the proposed three wavelet based algorithms is measured in terms of the accuracy of spike detection, percentage of false positives and the computational complexity for different types of wavelet families. The optimal wavelet for this purpose is then chosen from the wavelet family which gives the best results. Also, optimal levels of decomposition and threshold factors are chosen while maintaining a balance between accuracy and false positives. The algorithms are then tested for performance under different levels of SNR with the noise modeled as AR(5) or AWGN. The proposed wavelet based algorithms exhibit a detection accuracy of approximately 90% at a low SNR of 2.35 dB with the false positives below 5%. This constitutes a significant improvement over the results in existing literature which claim an accuracy of 80% with false positives of nearly 10%. As the SNR increases, the detection accuracy increases to close to 100% and the false alarm rate falls to 0. Chapter 6 summarizes the work. A comparison is made between the three proposed algorithms in terms of detection accuracy and false positives. Directions in which future work may be carried out are suggested.

Page generated in 0.0812 seconds