Spelling suggestions: "subject:"waving""
11 |
Estudo da conformabilidade de chapas de aço IF da indústria automobilística / Study of formability of IF steel sheet of automobilistic industryUnfer, Ricardo Kirchhof 28 August 2015 (has links)
Made available in DSpace on 2016-12-08T15:56:19Z (GMT). No. of bitstreams: 1
Ricardo Kirchhof Unfer.pdf: 99775 bytes, checksum: 27709fdea77151b3e21cfdaf92146d6e (MD5)
Previous issue date: 2015-08-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The new contributions of present thesis are an alternative experimental waviness method and a new theoretical model for evaluation of limit strains of sheet metal forming in the automotive industry, employing the analysis of roughness and waviness parameters evolution with the equivalent plastic strain and a new ductile rupture criterion as function of stress triaxiality. For validation of proposed experimental waviness method and rupture criterion, specimens of IF steel sheet of thickness 0.72mm, 0.82mm and 0.85mm were tested under tensile test and Nakazima sheet forming test with Marciniak flat punch. The specimens were deformed in incremental steps in different strain path such as: balanced biaxial stretching, plane strain, uniaxial tension and pure shear. Present proposed method consider that roughness and waviness parameters are important surface quality index and useful as indicator of onset of visible local necking and should be monitored in sheet metal forming. Thus, a Waviness Limit Curve, WLC, is proposed to be plotted in Map of Principal Limit Strains (MDLC) of sheet metal as an alternative to the forming limit strain curve, FLC. Various parameters of roughness and waviness such as arithmetic average roughness (Ra), maximum peak-valley roughness (Rt), arithmetic average waviness (Wa), total heigth peak-valley waviness (Wt), maximum peak height waviness (Pp) and maximum valley depth waviness (Pv) were measured during the uniaxial and biaxial testing. Tensile test of IF steel specimens at 0º, 45º and 90º to the rolling direction, RD, and Nakazima type of IF steel specimens at 0º RD only, in which a mesh of 2.5mm circles were printed, were employed. During the uniaxial and biaxial testing, the following plastic deformations were calculated in each straining step from the printed circles in the sheet surface: major true strain (1) and minor true strain (2). Parameters of roughness and waviness versus equivalent plastic strain curves were plotted to obtain a phenomenological equation of 4th and 3rd degree polynomials, using the Hill 1979 yield stress criterion. Furthermore, the growth rate of parameters Wa and Wt with equivalent plastic strain were calculated. From the growth rate, it was possible to conclude that the sheet 12 thickness imperfections, measured by Wa and Wt, evolve during material deformation, being possible to predict with accuracy the influence of equivalent plastic strain in the onset of local necking. From the experimental analysis, it was concluded that the maximum peak-valley waviness parameter (Wt) was the best option to chacaracterized the beginning of local necking in IF steel sheet forming. Thus, from the analysis of waviness growth rate parameters, Wa and Wt, during plastic strains, it was possible to propose a criterion of local necking inception. This allowed to obtain and plot an experimental Waviness Limit Curve (WLC) in the map MDLC: the beginning of local necking was established when the normalized parameter Wt* (=Wt/Wto) attained a critical value Wt*= 2.5, but with distinct values of equivalent strains. A second mathematical model was proposed for local necking criterion to obtain the FLC of IF steel sheets, employing stress triaxiality analysis and the Hill 1979 yield stress criterion. 2nd degree polynomials were obtained from plotted and adjusted phenomenological curves in graphs of equivalent strain at rupture versus stress triaxiality, considering the different plastic strain path in the formability testing. The IF steel specimens showed ductile rupture, according to scanning electronic microscope examinations, which showed that rupture occurred due to formation, growth and coalescence of large quantity of pores in many specimens of balanced biaxial (BB) and plane strain (DP). Also, mixed rupture of ductile type due to shear mechanisms in certain regions of tensile test (TS) and Nakazima uniaxial tension (UTN) specimens were shown. / As propostas de ineditismo da presente tese foram mostrar um método experimental alternativo de rugosidades e um modelo teórico de ruptura novo para se avaliar as deformações limites de conformação de chapas metálicas da indústria automobilística, empregando-se uma análise da evolução dos parâmetros de ondulação da rugosidade com a deformação plástica equivalente e um critério de ruptura dúctil em função da triaxialidade das tensões. Para validação do método experimental de rugosidades e do critério de ruptura propostos, utilizou-se corpos de prova de chapas de aço IF de 0,72mm, 0,82mm e 0,85mm de espessura, que foram submetidas aos ensaios de tração simples e ensaio de estampagem tipo Nakazima com punção plano de Marciniak. As amostras foram sujeitas a deformação incremental em diferentes trajetórias de deformação, tais como: estiramento biaxial balanceado, deformação plana, estiramento uniaxial e cisalhamento puro. O presente método proposto considera que parâmetros de rugosidade e ondulação são índices importantes de qualidade da superfície e servem como indicador preciso do início da estricção local visível e devem ser monitorados na conformação de chapas metálicas. Portanto, propõe-se traçar uma Curva Limite de Ondulação da Rugosidade, CLOR, no Mapa das Deformações Principais Limite de Conformação (MDLC) das chapas metálicas como alternativa da curva limite de conformação, CLC. Vários parâmetros do perfil de rugosidade e da ondulação da rugosidade tais como a rugosidade média aritmética (Ra), altura máxima pico-vale (Rt), ondulação média aritmética (Wa), a altura máxima da ondulação pico-vale (Wt), altura máxima de pico da ondulação (Pp) e profundidade máxima de vale (Pv) foram medidos durante os ensaios uniaxiais e biaxiais. Foram utilizados corpos de prova de aço IF em tração simples a 0º, 45º e 90º da direção de laminação, DL, e corpos de prova tipo ensaio Nakazima de aço IF somente a 0º DL nos quais foram impressos uma malha de círculos de 2,5 mm de diâmetro. Durante os ensaios uniaxiais e 10 biaxiais, as seguintes deformações plásticas foram calculadas em cada etapa a partir da malha de circulos impressos na superficie da chapa: a deformação verdadeira longitudinal maior (1) e a deformação verdadeira transversal menor (2). Curvas dos parâmetros de rugosidade e ondulações versus deformação plástica equivalente, empregando-se o critério de escoamento plástico de Hill (1979), foram traçados para se obter equações fenomenológicas do tipo polinomial de 4° e 3° graus. Além disso, foram calculadas as taxas de crescimento dos parâmetros Wa e Wt com a deformação plástica equivalente. A partir das curvas de taxas crescimento, foi possível concluir que as imperfeições na espessura da chapa, medidas por meio de Wa e Wt, evoluem durante a deformação do material, sendo possível prever com precisão a influência da deformação plástica equivalente no início do surgimento da estricção local. Concluiu-se então que o parâmetro da altura máxima total pico-vale das ondulações (Wt) é a melhor opção para caracterizar o início da estricção local em chapas de aço IF. Portanto, a partir da análise das taxas de crescimento dos parâmetros de ondulação, Wa e Wt, durante as deformações plásticas, foi possível propor um critério para o surgimento da estricção local. Isto permitiu obter e traçar a curva experimental de Limite de Ondulação da Rugosidade, (CLOR), no Mapa MDLC: o início da estricção local foi quando o parâmetro normalizado Wt* (=Wt/Wto) atingiu o valor crítico Wt*=2,5, mas com valores distintos da deformação equivalente. Um segundo modelo matemático foi proposto como critério de estricção local para obtenção da CLC de chapas de aço IF, empregando-se análise da triaxialidade de tensões e o critério de escoamento plástico de Hill (1979). Foram obtidos polinômios de 2º grau por meio de curvas fenomenológicas ajustadas e traçadas nos gráficos de triaxialidade de tensões versus deformação equivalente de ruptura, considerando-se as diferentes trajetórias da deformação plástica dos ensaios de conformabilidade. As amostras de chapa de aço IF mostraram ruptura dúctil conforme exame no microscópio eletrônico de varredura, o qual mostra que a fratura ocorreu devido a formação, crescimento e coalescência de uma grande quantidade de espaços vazios ou poros na maioria dos corpos de prova tipo Biaxial Balanceado (BB) e Deformação Plana (DP). Também, as amostras apresentaram fraturas mistas do tipo dúcteis e com mecanismos de cisalhamento em determinadas regiões das amostras fraturadas em Tração Simples (TS) e Tração Uniaxial de Nakazima (UTN).
|
12 |
Tragverhalten von textilbewehrtem Beton unter zweiaxialer Zugbeanspruchung: Bearing Behaviour of Textile Reinforced Concrete Under Biaxial Tension LoadingJesse, Dirk 17 December 2010 (has links)
Das Trag- und Verbundverhalten textiler Bewehrungen wurde in den vergangen Jahren umfassend experimentell untersucht. Die dabei gewonnenen Erkenntnisse stützen sich jedoch fast ausschließlich auf einaxiale Beanspruchungszustände. Grundsätzlich können aus dem Vergleich von Versuchen an Rovings und an textilen Bewehrungsstrukturen Rückschlüsse auf den Einfluss der Quer- und Stützfäden und der verschiedenen Bindungstechniken auf das einaxiale Tragverhalten von Textilbeton getroffen werden. Offen bleibt jedoch, inwieweit sich die gefundenen Gesetzmäßigkeiten auf mehraxiale Beanspruchungssituationen übertragen lassen. Dadurch werden Fragen bezüglich des Tragverhaltens textiler Bewehrungen unter mehraxialen Zugbeanspruchungen aufgeworfen, welche die Motivation für die vorliegende Arbeit liefern.
Die hierzu durchgeführten experimentellen Untersuchungen umfassen 84 Einzelversuche und wurden in einem speziell für zweiaxiale Zugbeanspruchungen entwickelten Versuchsaufbau durchgeführt. Als textile Bewehrungen kamen zwei verschiedene Gelegearten aus AR-Glas und Carbon zum Einsatz. Die Ergebnisse konnten die bisher ausschließlich an einaxialen Dehnkörpern gewonnenen Erkenntnisse über das Tragverhalten textiler Bewehrungen grundsätzlich bestätigen. Für den Übergang von Zustand I zum Zustand II konnte eine Abhängigkeit der Erstrissspannung vom Spannungsverhältnis nachgewiesen werden. Die Merkmale der Zustände IIa und IIb zeigen hingegen keine signifikante Abhängigkeit vom Verhältnis aus Längs- und Querzugspannung. Darüber hinaus haben offenbar durch Querzug induzierte bewehrungsparallele Risse keine maßgeblichen Auswirkungen auf das Verbundverhalten der Rovings in Längsrichtung.
Eine wesentliche Erkenntnis aus den biaxialen Zugversuchen mit Carbon betrifft den Einfluss der Welligkeit. Es wurde deutlich, dass der Abbau der Welligkeit in beschichteten textilen Bewehrungen hochgradig lastabhängig ist. In zahlreichen Versuchen mit Carbon kam es innerhalb des Zustands IIb zu Delamination, einem bisher in diesem Umfang nicht beobachteten Effekt. Die Erkenntnisse hinsichtlich des Abbaus der Welligkeit wurden im Anschluss auf das Tragverhalten von AR-Glas übertragen und führten zu einer Neubewertung des bei AR-Glas beobachteten Steifigkeitsdefizits im Zustand IIb. Weiterhin wurde der Einfluss der Orientierung der Bewehrung unter einaxialer Beanspruchung an scheibenartigen Probekörpern untersucht. Es zeigte sich, dass die untersuchten Bewehrungen aus AR-Glas hinsichtlich der Tragfähigkeit bei schiefwinkliger Beanspruchung deutlich unempfindlicher reagieren als Bewehrungen aus Carbon. Für die Reduktion der effektiven Faserbruchspannungen wurde ein mathematisches Modell vorgestellt, welches eine getrennte Beschreibung der geometrischen Einflüsse sowie alle sonstigen, die Faserbruchspannung reduzierenden Effekte erlaubt. / The load bearing and bond behaviour of textile reinforcements has been comprehensively studied experimental in recent years. The findings are based almost exclusively on uniaxial loading. Generally, from the comparison of tests on rovings and fabrics conclusions can be drawn about the influence of transverse and supporting threads and different binding patterns on the uniaxial load-bearing behaviour. However, it remains open, to what extend the found principles are applicable to multi-axial loading situations. This raises questions about the load bearing behaviour under multi-axial tension loading, which provide motivation for this work.
For the experimental studies on 84 specimens a specially developed test setup for biaxial tensile loading was used. Two different types of textile reinforcements made from AR-glass and carbon fibres were examined. The results generally approve the findings on the structural behaviour of textile reinforcements exclusively derived from uniaxial tests. A relationship between first cracking stress level and biaxial stress ratio has been found. The characteristics of the cracking phases and during stabilized cracking, however, show no significant dependencies on the ratio of longitudinal and transverse tensile stresses. Furthermore, parallel cracks induced by transverse tensile stresses have no significant impact on the bond behaviour of longitudinal rovings.
An essential result from biaxial tensile tests with carbon is the strong influence of waviness. It became clear that the reduction of waviness in coated textile reinforcement is highly load-dependent. In numerous experiments with carbon reinforcement delamination occurred during stabilized cracking – an effect, that has been observed in this large scale for the first time. The findings regarding the reduction of the waviness were subsequently applied to AR-glass and led to a revaluation of the known stiffness deficit in the phase IIb.
Furthermore, the influence of reinforcement orientation has been studied on discoidal specimens under uni-axial loading. It was found that the load bearing capacity of carbon reinforcement is much more sensible to load orientation than AR-glass. A mathematical model was presented, which allows the separate description of geometric factors and as well as all other effects that reduce the fibre tensile strength.
|
13 |
Numerical investigations on the uniaxial tensile behaviour of Textile Reinforced Concrete / Numerische Untersuchungen zum einaxialen Zugtragverhalten von TextilbetonHartig, Jens 25 March 2011 (has links) (PDF)
In the present work, the load-bearing behaviour of Textile Reinforced Concrete (TRC), which is a composite of a fine-grained concrete matrix and a reinforcement of high-performance fibres processed to textiles, exposed to uniaxial tensile loading was investigated based on numerical simulations. The investigations are focussed on reinforcement of multi-filament yarns of alkali-resistant glass. When embedded in concrete, these yarns are not entirely penetrated with cementitious matrix, which leads associated with the heterogeneity of the concrete and the yarns to a complex load-bearing and failure behaviour of the composite. The main objective of the work was the theoretical investigation of effects in the load-bearing behaviour of TRC, which cannot be explained solely by available experimental results. Therefore, a model was developed, which can describe the tensile behaviour of TRC in different experimental test setups with a unified approach.
Neglecting effects resulting from Poisson’s effect, a one-dimensional model implemented within the framework of the Finite Element Method was established. Nevertheless, the model takes also transverse effects into account by a subdivision of the reinforcement yarns into so-called segments. The model incorporates two types of finite elements: bar and bond elements. In longitudinal direction, the bar elements are arranged in series to represent the load-bearing behaviour of matrix or reinforcement. In transverse direction these bar element chains are connected with bond elements. The model gains most of its complexity from non-linearities arising from the constitutive relations, e. g., limited tensile strength of concrete and reinforcement, tension softening of the concrete, waviness of the reinforcement and non-linear bond laws. Besides a deterministic description of the material behaviour, also a stochastic formulation based on a random field approach was introduced in the model. The model has a number of advantageous features, which are provided in this combination only in a few of the existing models concerning TRC. It provides stress distributions in the reinforcement and the concrete as well as properties of concrete crack development like crack spacing and crack widths, which are in some of the existing models input parameters and not a result of the simulations. Moreover, the successive failure of the reinforcement can be studied with the model. The model was applied to three types of tests, the filament pull-out test, the yarn pull-out test and tensile tests with multiple concrete cracking.
The results of the simulations regarding the filament pull-out tests showed good correspondence with experimental data. Parametric studies were performed to investigate the influence of geometrical properties in these tests like embedding and free lengths of the filament as well as bond properties between filament and matrix. The presented results of simulations of yarn pull-out tests demonstrated the applicability of the model to this type of test. It has been shown that a relatively fine subdivision of the reinforcement is necessary to represent the successive failure of the reinforcement yarns appropriately. The presented results showed that the model can provide the distribution of failure positions in the reinforcement and the degradation development of yarns during loading. One of the main objectives of the work was to investigate effects concerning the tensile material behaviour of TRC, which could not be explained, hitherto, based solely on experimental results. Hence, a large number of parametric studies was performed concerning tensile tests with multiple concrete cracking, which reflect the tensile behaviour of TRC as occurring in practice. The results of the simulations showed that the model is able to reproduce the typical tripartite stress-strain response of TRC consisting of the uncracked state, the state of multiple matrix cracking and the post-cracking state as known from experimental investigations. The best agreement between simulated and experimental results was achieved considering scatter in the material properties of concrete as well as concrete tension softening and reinforcement waviness. / Die vorliegende Arbeit beschäftigt sich mit Untersuchungen zum einaxialen Zugtragverhalten von Textilbeton. Textilbeton ist ein Verbundwerkstoff bestehend aus einer Matrix aus Feinbeton und einer Bewehrung aus Multifilamentgarnen aus Hochleistungsfasern, welche zu textilen Strukturen verarbeitet sind. Die Untersuchungen konzentrieren sich auf Bewehrungen aus alkali-resistentem Glas. Das Tragverhalten des Verbundwerkstoffs ist komplex, was aus der Heterogenität der Matrix und der Garne sowie der unvollständigen Durchdringung der Garne mit Matrix resultiert. Das Hauptziel der Arbeit ist die theoretische Untersuchung von Effekten und Mechanismen innerhalb des Lastabtragverhaltens von Textilbeton, welche nicht vollständig anhand verfügbarer experimenteller Ergebnisse erklärt werden können. Das entsprechende Modell zur Beschreibung des Zugtragverhaltens von Textilbeton soll verschiedene experimentelle Versuchstypen mit einem einheitlichen Modell abbilden können.
Unter Vernachlässigung von Querdehneffekten wurde ein eindimensionales Modell entwickelt und im Rahmen der Finite-Elemente-Methode numerisch implementiert. Es werden jedoch auch Lastabtragmechanismen in Querrichtung durch eine Unterteilung der Bewehrungsgarne in sogenannte Segmente berücksichtigt. Das Modell enthält zwei Typen von finiten Elementen: Stabelemente und Verbundelemente. In Längsrichtung werden Stabelemente kettenförmig angeordnet, um das Tragverhalten von Matrix und Bewehrung abzubilden. In Querrichtung sind die Stabelementketten mit Verbundelementen gekoppelt. Das Modell erhält seine Komplexität hauptsächlich aus Nichtlinearitäten in der Materialbeschreibung, z.B. durch begrenzte Zugfestigkeiten von Matrix und Bewehrung, Zugentfestigung der Matrix, Welligkeit der Bewehrung und nichtlineare Verbundgesetze. Neben einer deterministischen Beschreibung des Materialverhaltens beinhaltet das Modell auch eine stochastische Beschreibung auf Grundlage eines Zufallsfeldansatzes. Mit dem Modell können Spannungsverteilungen im Verbundwerkstoff und Eigenschaften der Betonrissentwicklung, z.B. in Form von Rissbreiten und Rissabständen untersucht werden, was in dieser Kombination nur mit wenigen der existierenden Modelle für Textilbeton möglich ist. In vielen der vorhandenen Modelle sind diese Eigenschaften Eingangsgrößen für die Berechnungen und keine Ergebnisse. Darüber hinaus kann anhand des Modells auch das sukzessive Versagen der Bewehrungsgarne studiert werden. Das Modell wurde auf drei verschiedene Versuchstypen angewendet: den Filamentauszugversuch, den Garnauszugversuch und Dehnkörperversuche.
Die Berechnungsergebnisse zu den Filamentauszugversuchen zeigten eine gute Übereinstimmung mit experimentellen Resultaten. Zudem wurden Parameterstudien durchgeführt, um Einflüsse aus Geometrieeigenschaften wie der eingebetteten und freien Filamentlänge sowie Materialeigenschaften wie dem Verbund zwischen Matrix und Filament zu untersuchen. Die Berechnungsergebnisse zum Garnauszugversuch demonstrierten die Anwendbarkeit des Modells auf diesen Versuchstyp. Es wurde gezeigt, dass für eine realitätsnahe Abbildung des Versagensverhaltens der Bewehrungsgarne eine relativ feine Auflösung der Bewehrung notwendig ist. Die Berechnungen lieferten die Verteilung von Versagenspositionen in der Bewehrung und die Entwicklung der Degradation der Garne im Belastungsverlauf. Ein Hauptziel der Arbeit war die Untersuchung von Effekten im Zugtragverhalten von Textilbeton, die bisher nicht durch experimentelle Untersuchungen erklärt werden konnten. Daher wurde eine Vielzahl von Parameterstudien zu Dehnkörpern mit mehrfacher Matrixrissbildung, welche das Zugtragverhalten von Textilbeton ähnlich praktischen Anwendungen abbilden, durchgeführt. Die Berechnungsergebnisse zeigten, dass der experimentell beobachtete dreigeteilte Verlauf der Spannungs-Dehnungs-Beziehung von Textilbeton bestehend aus dem ungerissenen Zustand, dem Zustand der Matrixrissbildung und dem Zustand der abgeschlossenen Rissbildung vom Modell wiedergegeben wird. Die beste Übereinstimmung zwischen berechneten und experimentellen Ergebnissen ergab sich unter Einbeziehung von Streuungen in den Materialeigenschaften der Matrix, der Zugentfestigung der Matrix und der Welligkeit der Bewehrung.
|
14 |
Numerical investigations on the uniaxial tensile behaviour of Textile Reinforced ConcreteHartig, Jens 27 January 2011 (has links)
In the present work, the load-bearing behaviour of Textile Reinforced Concrete (TRC), which is a composite of a fine-grained concrete matrix and a reinforcement of high-performance fibres processed to textiles, exposed to uniaxial tensile loading was investigated based on numerical simulations. The investigations are focussed on reinforcement of multi-filament yarns of alkali-resistant glass. When embedded in concrete, these yarns are not entirely penetrated with cementitious matrix, which leads associated with the heterogeneity of the concrete and the yarns to a complex load-bearing and failure behaviour of the composite. The main objective of the work was the theoretical investigation of effects in the load-bearing behaviour of TRC, which cannot be explained solely by available experimental results. Therefore, a model was developed, which can describe the tensile behaviour of TRC in different experimental test setups with a unified approach.
Neglecting effects resulting from Poisson’s effect, a one-dimensional model implemented within the framework of the Finite Element Method was established. Nevertheless, the model takes also transverse effects into account by a subdivision of the reinforcement yarns into so-called segments. The model incorporates two types of finite elements: bar and bond elements. In longitudinal direction, the bar elements are arranged in series to represent the load-bearing behaviour of matrix or reinforcement. In transverse direction these bar element chains are connected with bond elements. The model gains most of its complexity from non-linearities arising from the constitutive relations, e. g., limited tensile strength of concrete and reinforcement, tension softening of the concrete, waviness of the reinforcement and non-linear bond laws. Besides a deterministic description of the material behaviour, also a stochastic formulation based on a random field approach was introduced in the model. The model has a number of advantageous features, which are provided in this combination only in a few of the existing models concerning TRC. It provides stress distributions in the reinforcement and the concrete as well as properties of concrete crack development like crack spacing and crack widths, which are in some of the existing models input parameters and not a result of the simulations. Moreover, the successive failure of the reinforcement can be studied with the model. The model was applied to three types of tests, the filament pull-out test, the yarn pull-out test and tensile tests with multiple concrete cracking.
The results of the simulations regarding the filament pull-out tests showed good correspondence with experimental data. Parametric studies were performed to investigate the influence of geometrical properties in these tests like embedding and free lengths of the filament as well as bond properties between filament and matrix. The presented results of simulations of yarn pull-out tests demonstrated the applicability of the model to this type of test. It has been shown that a relatively fine subdivision of the reinforcement is necessary to represent the successive failure of the reinforcement yarns appropriately. The presented results showed that the model can provide the distribution of failure positions in the reinforcement and the degradation development of yarns during loading. One of the main objectives of the work was to investigate effects concerning the tensile material behaviour of TRC, which could not be explained, hitherto, based solely on experimental results. Hence, a large number of parametric studies was performed concerning tensile tests with multiple concrete cracking, which reflect the tensile behaviour of TRC as occurring in practice. The results of the simulations showed that the model is able to reproduce the typical tripartite stress-strain response of TRC consisting of the uncracked state, the state of multiple matrix cracking and the post-cracking state as known from experimental investigations. The best agreement between simulated and experimental results was achieved considering scatter in the material properties of concrete as well as concrete tension softening and reinforcement waviness. / Die vorliegende Arbeit beschäftigt sich mit Untersuchungen zum einaxialen Zugtragverhalten von Textilbeton. Textilbeton ist ein Verbundwerkstoff bestehend aus einer Matrix aus Feinbeton und einer Bewehrung aus Multifilamentgarnen aus Hochleistungsfasern, welche zu textilen Strukturen verarbeitet sind. Die Untersuchungen konzentrieren sich auf Bewehrungen aus alkali-resistentem Glas. Das Tragverhalten des Verbundwerkstoffs ist komplex, was aus der Heterogenität der Matrix und der Garne sowie der unvollständigen Durchdringung der Garne mit Matrix resultiert. Das Hauptziel der Arbeit ist die theoretische Untersuchung von Effekten und Mechanismen innerhalb des Lastabtragverhaltens von Textilbeton, welche nicht vollständig anhand verfügbarer experimenteller Ergebnisse erklärt werden können. Das entsprechende Modell zur Beschreibung des Zugtragverhaltens von Textilbeton soll verschiedene experimentelle Versuchstypen mit einem einheitlichen Modell abbilden können.
Unter Vernachlässigung von Querdehneffekten wurde ein eindimensionales Modell entwickelt und im Rahmen der Finite-Elemente-Methode numerisch implementiert. Es werden jedoch auch Lastabtragmechanismen in Querrichtung durch eine Unterteilung der Bewehrungsgarne in sogenannte Segmente berücksichtigt. Das Modell enthält zwei Typen von finiten Elementen: Stabelemente und Verbundelemente. In Längsrichtung werden Stabelemente kettenförmig angeordnet, um das Tragverhalten von Matrix und Bewehrung abzubilden. In Querrichtung sind die Stabelementketten mit Verbundelementen gekoppelt. Das Modell erhält seine Komplexität hauptsächlich aus Nichtlinearitäten in der Materialbeschreibung, z.B. durch begrenzte Zugfestigkeiten von Matrix und Bewehrung, Zugentfestigung der Matrix, Welligkeit der Bewehrung und nichtlineare Verbundgesetze. Neben einer deterministischen Beschreibung des Materialverhaltens beinhaltet das Modell auch eine stochastische Beschreibung auf Grundlage eines Zufallsfeldansatzes. Mit dem Modell können Spannungsverteilungen im Verbundwerkstoff und Eigenschaften der Betonrissentwicklung, z.B. in Form von Rissbreiten und Rissabständen untersucht werden, was in dieser Kombination nur mit wenigen der existierenden Modelle für Textilbeton möglich ist. In vielen der vorhandenen Modelle sind diese Eigenschaften Eingangsgrößen für die Berechnungen und keine Ergebnisse. Darüber hinaus kann anhand des Modells auch das sukzessive Versagen der Bewehrungsgarne studiert werden. Das Modell wurde auf drei verschiedene Versuchstypen angewendet: den Filamentauszugversuch, den Garnauszugversuch und Dehnkörperversuche.
Die Berechnungsergebnisse zu den Filamentauszugversuchen zeigten eine gute Übereinstimmung mit experimentellen Resultaten. Zudem wurden Parameterstudien durchgeführt, um Einflüsse aus Geometrieeigenschaften wie der eingebetteten und freien Filamentlänge sowie Materialeigenschaften wie dem Verbund zwischen Matrix und Filament zu untersuchen. Die Berechnungsergebnisse zum Garnauszugversuch demonstrierten die Anwendbarkeit des Modells auf diesen Versuchstyp. Es wurde gezeigt, dass für eine realitätsnahe Abbildung des Versagensverhaltens der Bewehrungsgarne eine relativ feine Auflösung der Bewehrung notwendig ist. Die Berechnungen lieferten die Verteilung von Versagenspositionen in der Bewehrung und die Entwicklung der Degradation der Garne im Belastungsverlauf. Ein Hauptziel der Arbeit war die Untersuchung von Effekten im Zugtragverhalten von Textilbeton, die bisher nicht durch experimentelle Untersuchungen erklärt werden konnten. Daher wurde eine Vielzahl von Parameterstudien zu Dehnkörpern mit mehrfacher Matrixrissbildung, welche das Zugtragverhalten von Textilbeton ähnlich praktischen Anwendungen abbilden, durchgeführt. Die Berechnungsergebnisse zeigten, dass der experimentell beobachtete dreigeteilte Verlauf der Spannungs-Dehnungs-Beziehung von Textilbeton bestehend aus dem ungerissenen Zustand, dem Zustand der Matrixrissbildung und dem Zustand der abgeschlossenen Rissbildung vom Modell wiedergegeben wird. Die beste Übereinstimmung zwischen berechneten und experimentellen Ergebnissen ergab sich unter Einbeziehung von Streuungen in den Materialeigenschaften der Matrix, der Zugentfestigung der Matrix und der Welligkeit der Bewehrung.
|
Page generated in 0.1769 seconds