Spelling suggestions: "subject:"weak prediction"" "subject:"were prediction""
1 |
Tool wear in titanium machining / Förslitning av skärverktyg vid svarvning av titanOdelros, Stina January 2012 (has links)
The present work was performed at AB Sandvik Coromant as a part in improving the knowledge and understanding about wear of uncoated WC/Co cutting tools during turning of titanium alloy Ti-6Al-4V. When machining titanium alloys, or any other material, wear of the cutting tools has a huge impact on the ability to shape the material as well as the manufacturing cost of the finished product. Due to the low thermal conductivity of titanium, high cutting temperatures will occur in narrow regions near the cutting edge during machining. This will result in high reaction and diffusion rates, resulting in high cutting tool wear rates. To be able to improve titanium machining, better knowledge and understanding about wear during these tough conditions are needed. Wear tests were performed during orthogonal turning of titanium alloy and the cutting tool inserts were analysed by SEM, EDS and optical imaging in Alicona InfiniteFocus. Simulations in AdvantEdge provided calculated values for cutting temperatures, cutting forces and contact stresses for the same conditions as used during wear tests. It was found that turning titanium alloy with WC/Co cutting tools at cutting speeds 30-60 m/min causes chamfering of the cutting tool edge and adhesion of a build-up layer (BUL) of workpiece material on top of the rake face wear land. The wear rate for these low cutting speeds was found to be almost unchanging during cutting times up to 3 minutes. During cutting speeds of 90-115 m/min, crater wear was found to be the dominating wear mechanism and the wear rate was found to have a linear dependence of cutting speed. An Arrhenius-type temperature dependent wear mechanism was found for high cutting speeds, between 90 and 115 m/min.
|
2 |
On Simulation of Uniform Wear and Profile Evolution in the Wheel - Rail ContactEnblom, Roger January 2006 (has links)
<p>Numerical procedures for reliable wheel and rail wear prediction are rare. Recent development of simulation techniques and computer power together with tribological knowledge do however suggest computer aided wear prediction as possible. The present objective is to devise a numerical procedure able to simulate profile evolution due to uniform wear sufficiently accurate for application to vehicle dynamics simulation. Such a tool should be useful for maintenance planning, optimisation of the railway system and its components as well as trouble-shooting. More specifically, the field of application may include estimation of reprofiling frequency, optimisation of wheel – rail profile match, optimisation of running gear suspension parameters, and recognition of unfavourable profile evolution influencing the dynamic response of the vehicle.</p><p>The research contribution accounted for in this thesis includes, besides a literature review, modelling of the wheel – rail interface, benchmarking against traditional methods, and validation with respect to full-scale measurements.</p><p>The first part addresses wheel – rail contact conditions in the context of wear simulation as well as tribological environment and tractive forces. The current approach includes Archard’s wear model with associated wear maps, vehicle dynamics simulation, and railway network definition. One objective is to be able to include variations in operation conditions in the set of simulations instead of using scaling factors. In particular the influence of disc braking and varying lubrication conditions have been investigated. Both environmental factors like moist and contamination and deliberate lubrication need to be considered. As part of the associated contact analysis the influence of tangential elastic deformation of the contacting surfaces has been investigated and found to be essential in case of partial slip contact conditions. The influence on the calculated wear of replacing the Hertzian contact by a non-elliptic semi-Hertzian method has been investigated, showing relocation of material loss towards increased profile curvature.</p><p>In the second part comparisons have been carried out with traditional methods, where the material loss is assumed to be directly related to the energy dissipated in the contact. Attention has been paid to the understanding of the principle differences between the investigated methods, comparing the distribution of friction energy, sliding velocity, and wear depth. As a prerequisite, contact conditions with dependence on wheelset guidance and curving performance as well as influence of tractive forces have been investigated.</p><p>In the final part validation of the developments related to wheel wear simulation is addressed. Disc braking has been included and a wear map for moist contact conditions based on recent tests has been drafted. Good agreement with measurements from the reference operation, is achieved. Further a procedure for simulation of rail wear and corresponding profile evolution has been formulated. A simulation set is selected defining the vehicles running on the track to be investigated, their operating conditions, and contact parameters. Trial calculations of a few curves show qualitatively good results in terms of profile shape development and difference in wear mechanisms between gauge corner and rail head. The wear rates related to traffic tonnage are however overestimated. The impact of the model improvements accounted for in the first part of the thesis has been investigated, indicating directions for further development.</p>
|
3 |
On Simulation of Uniform Wear and Profile Evolution in the Wheel - Rail ContactEnblom, Roger January 2006 (has links)
Numerical procedures for reliable wheel and rail wear prediction are rare. Recent development of simulation techniques and computer power together with tribological knowledge do however suggest computer aided wear prediction as possible. The present objective is to devise a numerical procedure able to simulate profile evolution due to uniform wear sufficiently accurate for application to vehicle dynamics simulation. Such a tool should be useful for maintenance planning, optimisation of the railway system and its components as well as trouble-shooting. More specifically, the field of application may include estimation of reprofiling frequency, optimisation of wheel – rail profile match, optimisation of running gear suspension parameters, and recognition of unfavourable profile evolution influencing the dynamic response of the vehicle. The research contribution accounted for in this thesis includes, besides a literature review, modelling of the wheel – rail interface, benchmarking against traditional methods, and validation with respect to full-scale measurements. The first part addresses wheel – rail contact conditions in the context of wear simulation as well as tribological environment and tractive forces. The current approach includes Archard’s wear model with associated wear maps, vehicle dynamics simulation, and railway network definition. One objective is to be able to include variations in operation conditions in the set of simulations instead of using scaling factors. In particular the influence of disc braking and varying lubrication conditions have been investigated. Both environmental factors like moist and contamination and deliberate lubrication need to be considered. As part of the associated contact analysis the influence of tangential elastic deformation of the contacting surfaces has been investigated and found to be essential in case of partial slip contact conditions. The influence on the calculated wear of replacing the Hertzian contact by a non-elliptic semi-Hertzian method has been investigated, showing relocation of material loss towards increased profile curvature. In the second part comparisons have been carried out with traditional methods, where the material loss is assumed to be directly related to the energy dissipated in the contact. Attention has been paid to the understanding of the principle differences between the investigated methods, comparing the distribution of friction energy, sliding velocity, and wear depth. As a prerequisite, contact conditions with dependence on wheelset guidance and curving performance as well as influence of tractive forces have been investigated. In the final part validation of the developments related to wheel wear simulation is addressed. Disc braking has been included and a wear map for moist contact conditions based on recent tests has been drafted. Good agreement with measurements from the reference operation, is achieved. Further a procedure for simulation of rail wear and corresponding profile evolution has been formulated. A simulation set is selected defining the vehicles running on the track to be investigated, their operating conditions, and contact parameters. Trial calculations of a few curves show qualitatively good results in terms of profile shape development and difference in wear mechanisms between gauge corner and rail head. The wear rates related to traffic tonnage are however overestimated. The impact of the model improvements accounted for in the first part of the thesis has been investigated, indicating directions for further development. / QC 20110124
|
4 |
Simulation of Wheel and Rail Profile Evolution : Wear Modelling and ValidationEnblom, Roger January 2004 (has links)
<p>Numerical procedures for reliable wheel and rail wearprediction are rare. Recent development of simulationtechniques and computer power together with tribologicalknowledge do however suggest computer aided wear prediction.The objective of the related research field at the RoyalInstitute of Technology (KTH) is to arrive at a numericalprocedure able to simulate profile evolution due to uniformwear to a degree of accuracy sufficient for application tovehicle dynamics simulation. Such a tool would be useful formaintenance planning as well as optimisation of the transportsystem and its components.</p><p>The research contribution accounted for in this thesisincludes, in addition to a literature review, refinement ofmethods applied to uniform wheel wear simulation by inclusionof braking and improvement of the contact model. Further atentative application to uniform rail wheel simulation has beenproposed and tested.</p><p>The first part addresses issues related to braking andwheel-rail contact conditions in the context of wheel wearsimulation. The KTH approach includes Archards wear modelwith associated wear maps, vehicle dynamics simulation andrailway network definition. In previous work at KTH certainvariations in operating conditions have been accounted forthrough empirically estimated average scaling factors. Theobjective of the current research is to be able to include suchvariations in the set of simulations. In particular theinfluence of disc braking and varying friction and lubricationconditions are investigated. Both environmental factors likemoist and contamination and deliberate lubrication need to beconsidered. As part of the associated contact analysis theinfluence of tangential elastic deformation of the contactingsurfaces on the sliding velocity has been separatelyinvestigated and found to be essential in case of partial slipcontact conditions.</p><p>In the second part validation of the improvements related towheel wear simulation is addressed. Disc braking has beenincluded in the simulation set and a wear map for moist contactconditions based on recent tribometer tests has been draftedand tested. It has been shown that the previously used brakingfactor accounts for the combination of the contributions fromsurface elasticity and braking. Good agreement withmeasurements from the Stockholm commuter service is achieved.It is concluded that the model improvements accounted for aresufficient for adequate simulation of tread wear but thatfurther development of the flange / gauge corner contactmodelling may be needed.</p><p>In the final part a procedure for simulation of rail wearand corresponding profile evolution has been formulated. Asimulation set is selected defining the vehicles running on thetrack to be investigated, their operating conditions, andcontact parameters. Several variations of input data may beincluded together with the corresponding occurrenceprobability. Trial calculations of four non-lubricated curveswith radii from 303 m to 802 m show qualitatively reasonableresults in terms of profile shape development and difference inwear mechanisms between gauge corner and rail head. The wearrates related to traffic tonnage are however overestimated. Itis believed that model refinements in terms of environmentalinfluence and contact stress calculation are useful to improvethe quantitative results.</p> / QC 20100531
|
5 |
Nutzung vorhandener Standmengenpotentiale, Verschleißverringerung durch angepasste Elektrodenwerkstoffe und Elektrodenverschleißdiagnose beim WiderstandspunktschweißenGroßmann, Christoph 08 August 2019 (has links)
In dieser Arbeit werden vier Wege aufgezeigt die Gebrauchsdauer von Elektroden zu verbessern. Der erste Weg besteht darin die tatsächlich verfügbare Standmenge zu nutzen, soweit es statische Fräszyklen ermöglichen. Vom aktuellen Orientierungswert, welcher bei 120 Punktschweißverbindungen für eine Standmenge liegt, lassen sich auf diesem Weg 70% an Elektroden beim Schweißen feuerverzinkter Stahlbleche einsparen. Auf dem zweiten Weg wird nachgewiesen, dass die Standard-CuCr1Zr-Legierung verbessert werden kann. Bereits mit geringsten Gefüge-Modifikationen lassen sich ein gutmütigeres Verschleißverhalten, eine größere Standmenge und ein charakteristischeres Standmengenende erzielen. Der dritte Weg beleuchtet dispersionsgehärtete Elektrodenkappen. Solche sind nicht neu, aber wurden in den 2000er Jahren weiterentwickelt. Ihr nun verfügbares Potential erlaubt gegenüber der ersten Betrachtung einen bis zu 95% verringerten Elektroden-Bedarf an feuerverzinkten Blechen. Abschließend formuliert der vierte Weg eine zukunftsweisende Möglichkeit die Standmenge dynamisch der real verfügbaren Standmenge anzupassen. Dieser Ansatz erlaubt einerseits Haftpflichtrisiken an mathematisches Vorgehen zu überantworten und andererseits das Werkstoffpotential vollständig zu nutzen. Da Streubreiten der realen Standmengengrenzen bei bis zu 40% liegen, ist eine entsprechende Einsparung an Kupfer erreichbar. In der vorliegenden Arbeit wird dazu der Ansatz verfolgt den Punktdurchmesser aus typischen Prozessgrößen mittels Data Mining zu bestimmen. Das fertigungsnahe Qualitätsband von +/-10% Punktdurchmesser kann basierend auf einem mathematisch transparenten Modell mit über 93% Wahrscheinlichkeit korrekt berechnet werden.
|
6 |
Simulation of Wheel and Rail Profile Evolution : Wear Modelling and ValidationEnblom, Roger January 2004 (has links)
Numerical procedures for reliable wheel and rail wearprediction are rare. Recent development of simulationtechniques and computer power together with tribologicalknowledge do however suggest computer aided wear prediction.The objective of the related research field at the RoyalInstitute of Technology (KTH) is to arrive at a numericalprocedure able to simulate profile evolution due to uniformwear to a degree of accuracy sufficient for application tovehicle dynamics simulation. Such a tool would be useful formaintenance planning as well as optimisation of the transportsystem and its components. The research contribution accounted for in this thesisincludes, in addition to a literature review, refinement ofmethods applied to uniform wheel wear simulation by inclusionof braking and improvement of the contact model. Further atentative application to uniform rail wheel simulation has beenproposed and tested. The first part addresses issues related to braking andwheel-rail contact conditions in the context of wheel wearsimulation. The KTH approach includes Archards wear modelwith associated wear maps, vehicle dynamics simulation andrailway network definition. In previous work at KTH certainvariations in operating conditions have been accounted forthrough empirically estimated average scaling factors. Theobjective of the current research is to be able to include suchvariations in the set of simulations. In particular theinfluence of disc braking and varying friction and lubricationconditions are investigated. Both environmental factors likemoist and contamination and deliberate lubrication need to beconsidered. As part of the associated contact analysis theinfluence of tangential elastic deformation of the contactingsurfaces on the sliding velocity has been separatelyinvestigated and found to be essential in case of partial slipcontact conditions. In the second part validation of the improvements related towheel wear simulation is addressed. Disc braking has beenincluded in the simulation set and a wear map for moist contactconditions based on recent tribometer tests has been draftedand tested. It has been shown that the previously used brakingfactor accounts for the combination of the contributions fromsurface elasticity and braking. Good agreement withmeasurements from the Stockholm commuter service is achieved.It is concluded that the model improvements accounted for aresufficient for adequate simulation of tread wear but thatfurther development of the flange / gauge corner contactmodelling may be needed. In the final part a procedure for simulation of rail wearand corresponding profile evolution has been formulated. Asimulation set is selected defining the vehicles running on thetrack to be investigated, their operating conditions, andcontact parameters. Several variations of input data may beincluded together with the corresponding occurrenceprobability. Trial calculations of four non-lubricated curveswith radii from 303 m to 802 m show qualitatively reasonableresults in terms of profile shape development and difference inwear mechanisms between gauge corner and rail head. The wearrates related to traffic tonnage are however overestimated. Itis believed that model refinements in terms of environmentalinfluence and contact stress calculation are useful to improvethe quantitative results. / QC 20100531
|
7 |
Wear prediction of piston/cylinder pair in axial piston pumpLyu, Fei, Zhang, Junhui, Xu, Bing 25 June 2020 (has links)
The piston/cylinder pair is the key lubricating interface of axial piston pumps. It suffers from excessive wear due to the huge lateral force, especially under high output pressure. In order to achieve predictive maintenance, it is significant to detect the performance degradation of the piston/cylinder pair. In this paper, a method to predict the wear of the piston/cylinder pair is proposed. The wear regions and corresponding wear depths under different conditions are investigated. The distributive characteristic parameters of the oil film are obtained, which can reflect the load-bearing and lubrication conditions at each region of the friction pair. Based on the oil film characteristic parameters, the most suitable wear model is chosen to calculate the wear depth, and then the entire wear profile of the piston/cylinder pair is obtained. The experimental investigation is carried out, and the results show that the accuracy of the wear regions and corresponding wear depth prediction is high. This method can be used to pump healthy management and choose the suitable working conditions of the axial piston pump.
|
8 |
PREVENTION OF WHEEL WEAR, A CASE STUDY : Developing a functioning wheel profile for rail-mounted transportation trolley.Inglot, Agnieszka, Franzén, Oskar January 2019 (has links)
This bachelor’s degree project aimed to improve the wheel profile of a rail mounted trolley and determine the cause of wheel failure. The proceedings of this project where modelled after an approach for solving wear problems with an emphasis on designing for sustainability. A case study and root cause analysis (RCA) was performed and the flanged wheels were deemed insufficient for the given heavy-haul system. Possible areas of wheel profile improvement were identified and further researched with multiple literature reviews. Throughout the projects duration several limitations were introduced that reduced the concept testing to exclusively theoretical prediction models. Archard’s model was implemented to predict wear and operating time for the proposed material and wheel tread profile concepts. The wheel flange dimensions were chosen based on recommendations from wheel and rail interference handbooks among other sources. The final wheel and rail profile suggestion improved operating time by approximately 300% and wear resistance by 50% compared to its predecessor. This result was achieved by applying the same theoretical prediction model to both current and suggested profiles. The findings of this project are meant to aid SCA among others in similar cases and additionally highlight the value of product improvement from a technological, sociological, and environmental perspective.
|
Page generated in 0.1284 seconds