• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automation of Customization on TEXO’s FSX Weaving Loom Concept

Kidanemariam, Semere January 2012 (has links)
The continuously increasing demand of the customer requires equivalent response from the industry. This phenomenon of lean supply chain has also been seen in the paper and textile industries. TEXO AB produces customized weaving looms for the paper and textile industries. As every machine is redesigned to the customer requirements, TEXO needed to make the process efficient and effective. Once again the application of new computing technologies comes in handy. The practice of parametric design is applied to the TEXO’s FSX concept, which is one of the three weaving loom machine series supplied by TEXO. The frequent customization of FSX concept for each customer has created the need for faster redesign, better communication and quick order to suppliers. The automation is done on Autodesk Inventor using its iLogic and Shrinkwrap features. The parametric model is complete where all components to be customized are included. An excel sheet with design calculations, parameters and possible machine modules is developed together with the model. The feasibility of the automated design has been shown by the complete conformance of the model to the requirement. The excel sheet is very useful for improving the internal and external communications. After the completion of this project the redesign time is significantly reduced and the communication is simplified. It is also now possible to identify customization and module opportunities for future machines.
2

Development of seamless woven node element structures for application in integral constructions

Fazeli, Monireh, Hübner, Matthias, Lehmann, Theo, Gebhardt, Ulrike, Hoffmann, Gerald, Cherif, Chokri 25 September 2019 (has links)
In order to advance consistent lightweight construction principles in automotive and mechanical engineering, support frame construction made from high-performance materials is becoming more commonplace. These consist of complexly structured nodular connection elements. The required connection elements have not yet been produced satisfactorily. The developed node element structures in this paper are produced on a shuttle weaving loom by flattening and weaving them as multi-surface woven fabrics. The development of the woven concept for the realization of node element structures is based on the fragmentation of the individual sub-elements. The goal of this research is development of a flexible technology for weaving fabrics and intended for the integral realization of woven nodular semi-finished products with complex geometries and connections, which are to be used to connect Fiber-reinforced Plastic components in support frame structures.
3

Development of spatially branched woven node structures on the conventional weaving loom

Fazeli, Monireh, Hübner, Matthias, Lehmann, Theo, Gebhardt, Ulrike, Hoffmann, Gerald, Cherif, Chokri 05 November 2019 (has links)
The increasing need of consistent implementation of lightweight constructions in many technical fields makes the manufacture of near net-shaped node structure to be used in textile-reinforced composites a subject of great interest. The manufacture of the node structure is required to provide a strong node point whilst maintaining the circumference of each adjoining strut. Despite a variety of available methods to produce three-dimensional nodal fabric, the required geometry for the complex nodular connection element has not yet been fully achieved. Furthermore, the available methods have limitations. The developed woven concept in this work allows for maintaining the configuration of the node structure and dimensions of the tubes, especially at the node points. As a result, all tubes positioned at node points are fully open; this is accomplished without distorting the surrounding area once the flat woven node structure is removed from the loom and erected into three-dimensional configuration. In order to produce a three-dimensional structure on a conventional weaving machine, the structure must be flattened in an appropriate way. By using a mathematical algorithm, it is possible to graph the flattened structure precisely. The developed weaving concept and relating calculation are applied to create the weaving plan of the spatial nodal structures, which can be produced on a shuttle weaving loom. The developed concept in this paper will provide repeatable manufacturing of complex node structures by using the conventional weaving loom. The struts of node structures manufactured using this method can be woven at any angle and with spatial arrangements.

Page generated in 0.1118 seconds