• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quality of Service in Ad Hoc Networks by Priority Queuing / Tjänstekvalitet i ad hoc nät med köprioritering

Tronarp, Otto January 2003 (has links)
<p>The increasing usage of information technology in military affairs raises the need for robust high capacity radio networks. The network will be used to provide several different types of services, for example group calls and situation awareness services. All services have specific demands on packet delays and packet losses in order to be fully functional, and therefore there is a need for a Quality of Service (QoS) mechanism in the network. </p><p>In this master thesis we examine the possibility to provide a QoS mechanism in Ad Hoc networks by using priority queues. The study includes two different queuing schemes, namely fixed priority queuing and weighted fair queuing. The performance of the two queuing schemes are evaluated and compared with respect to the ability to provide differentiation in network delay, i.e., provide high priority traffic with lower delays than low priority traffic. The study is mainly done by simulations, but for fixed priority queuing we also derive a analytical approximation of the network delay. </p><p>Our simulations show that fixed priority queuing provides a sharp delay differentiation between service classes, while weighted fair queuing gives the ability to control the delay differentiation. One of those queuing schemes alone might not be the best solution for providing QoS, instead we suggest that a combination of them is used.</p>
2

Quality of Service in Ad Hoc Networks by Priority Queuing / Tjänstekvalitet i ad hoc nät med köprioritering

Tronarp, Otto January 2003 (has links)
The increasing usage of information technology in military affairs raises the need for robust high capacity radio networks. The network will be used to provide several different types of services, for example group calls and situation awareness services. All services have specific demands on packet delays and packet losses in order to be fully functional, and therefore there is a need for a Quality of Service (QoS) mechanism in the network. In this master thesis we examine the possibility to provide a QoS mechanism in Ad Hoc networks by using priority queues. The study includes two different queuing schemes, namely fixed priority queuing and weighted fair queuing. The performance of the two queuing schemes are evaluated and compared with respect to the ability to provide differentiation in network delay, i.e., provide high priority traffic with lower delays than low priority traffic. The study is mainly done by simulations, but for fixed priority queuing we also derive a analytical approximation of the network delay. Our simulations show that fixed priority queuing provides a sharp delay differentiation between service classes, while weighted fair queuing gives the ability to control the delay differentiation. One of those queuing schemes alone might not be the best solution for providing QoS, instead we suggest that a combination of them is used.
3

Intelligent based Packet Scheduling Scheme using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) Technology for 5G. Design and Investigation of Bandwidth Management Technique for Service-Aware Traffic Engineering using Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) for 5G

Mustapha, Oba Z. January 2019 (has links)
Multi-Protocol Label Switching (MPLS) makes use of traffic engineering (TE) techniques and a variety of protocols to establish pre-determined highly efficient routes in Wide Area Network (WAN). Unlike IP networks in which routing decision has to be made through header analysis on a hop-by-hop basis, MPLS makes use of a short bit sequence that indicates the forwarding equivalence class (FEC) of a packet and utilises a predefined routing table to handle packets of a specific FEC type. Thus header analysis of packets is not required, resulting in lower latency. In addition, packets of similar characteristics can be routed in a consistent manner. For example, packets carrying real-time information can be routed to low latency paths across the networks. Thus the key success to MPLS is to efficiently control and distribute the bandwidth available between applications across the networks. A lot of research effort on bandwidth management in MPLS networks has already been devoted in the past. However, with the imminent roll out of 5G, MPLS is seen as a key technology for mobile backhaul. To cope with the 5G demands of rich, context aware and multimedia-based user applications, more efficient bandwidth management solutions need to be derived. This thesis focuses on the design of bandwidth management algorithms, more specifically QoS scheduling, in MPLS network for 5G mobile backhaul. The aim is to ensure the reliability and the speed of packet transfer across the network. As 5G is expected to greatly improve the user experience with innovative and high quality services, users’ perceived quality of service (QoS) needs to be taken into account when deriving such bandwidth management solutions. QoS expectation from users are often subjective and vague. Thus this thesis proposes the use of fuzzy logic based solution to provide service aware and user-centric bandwidth management in order to satisfy requirements imposed by the network and users. Unfortunately, the disadvantage of fuzzy logic is scalability since dependable fuzzy rules and membership functions increase when the complexity of being modelled increases. To resolve this issue, this thesis proposes the use of neuro-fuzzy to solicit interpretable IF-THEN rules.The algorithms are implemented and tested through NS2 and Matlab simulations. The performance of the algorithms are evaluated and compared with other conventional algorithms in terms of average throughput, delay, reliability, cost, packet loss ratio, and utilization rate. Simulation results show that the neuro-fuzzy based algorithm perform better than fuzzy and other conventional packet scheduling algorithms using IP and IP over MPLS technologies. / Tertiary Education Trust Fund (TETFUND)

Page generated in 0.0787 seconds