Spelling suggestions: "subject:"western cascades"" "subject:"western fascades""
1 |
Microclimate and Phenology at the H.J. Andrews Experimental ForestWard, Sarah 31 October 2018 (has links)
Spring plant phenology is often used as an indicator of a community response to climate change. Remote data and low-resolution climate models are typically used to predict phenology across a landscape; however, this tends to miss the nuances of microclimate, especially in a mountainous area with heterogeneous topography. I investigated how inter-annual variability in regional climate affects the distribution of microclimates (i.e., areas <100m2) and spring plant phenology across a 6400-hectare watershed within the Western Cascades in Oregon. Additionally, I created species-specific models of bud break at the microclimate scale, that could then be applied across a wider landscape. I found that years with warm winters, few storms and low snowpack have a homogenizing effect on microclimate and spring phenology events, and that bud break models developed at a local scale can be effectively applied across a broader landscape.
This thesis includes previously unpublished coauthored material.
|
2 |
Influence of spatial and temporal factors on plants, pollinators and plant-pollinator interactions in montane meadows of the western Cascades RangePfeiffer, Vera W. 01 June 2012 (has links)
Montane meadows comprise less than 5% of the landscape of the western Cascades of Oregon, but they provide habitat for diverse species of plants and pollinators. Little is known about plant-pollinator network structure at these sites. This study quantified plant-pollinator interactions over the summer of 2011, based on six observations of 10 permanent subplots in 15 meadows, stratified by size and isolation. The study examined (1) relationships between richness and abundance of flowers, pollinators, and interactions; (2) distribution of abundance and richness of flowers, pollinators, and interactions with regards to surrounding meadow habitat; (3) change in flower and pollinator abundance over the season; (4) factors associated with the presence of various guilds of pollinators; and (5) the structure of plant-pollinator networks. The study showed that (1) richness of pollinators increased 2x faster than richness of flowers with increased abundance; (2) density of flowers and interactions was positively correlated with meadow size and diversity of pollinators and interactions were both correlated with surrounding habitat at two spatial scales; (3) peak flower abundance coincided with or preceded peaks in pollinator populations; (4) abundance of three guilds of bees exhibited different patterns of association to surrounding habitat and meadow soil moisture corresponding to various dispersal potential and phenology of guild species; and (5) the number of network pairings for plants and pollinators increased with increasing species richness of potential interaction partners and all networks were found to be significantly nested. Results of this study indicate that plant-pollinator networks are complex assemblages of species, in which spatial and temporal patterns of habitat affect species composition and network structure. In particular, flower and pollinator abundance and richness are depressed in small and isolated meadows. Significant nestedness emerged as a pattern of network level organization across the study meadows. / Graduation date: 2013
|
Page generated in 0.079 seconds