• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical Properties of Random Discontinuous Fiber Composites Manufactured from Wetlay Process

Lu, Yunkai 22 August 2002 (has links)
The random discontinuous fiber composite has uniform properties in all directions. The wetlay process is an efficient method to manufacture random discontinuous thermoplastic preform sheets that can be molded into random composite plaques in the hot-press. Investigations were done on the molding parameters that included the set-point mold pressure, set-point mold temperature and cooling methods. The fibers used in the study included glass and carbon fiber. Polypropylene (PP) and Polyethylene Terephthalate (PET) were used as the matrix. Glass/PP and Glass/PET plaques that had fiber volume fractions ranging from 0.05 to 0.50 at an increment of 0.05 were molded. Both tensile and flexural tests were conducted. The test results showed a common pattern, i.e., the modulus and strength of the composite increased with the fiber volume fraction to a maximum and then started to descend. The test results were analyzed to find out the optimal fiber volume fraction that yielded the maximum modulus or strength. Carbon/PET composites plaques were also molded to compare their properties with Glass/PET composite at similar fiber volume fractions. Micrographs were taken of selected specimens to examine the internal structure of the material. Existing micromechanics models that predict the tensile modulus or strength of random fiber composites were examined. Predictions from some of the models were compared with test data. / Master of Science
2

Characterization of Carbon Mat Thermoplastic Composites: Flow and Mechanical Properties

Caba, Aaron C. 12 October 2005 (has links)
Carbon mat thermoplastics (CMT) consisting of 12.7 mm or 25.4 mm long, 7.2 micrometer diameter, chopped carbon fibers in a polypropylene (PP) or poly(ethylene terephthalate) (PET) thermoplastic matrix were manufactured using the wetlay technique. This produces a porous mat with the carbon fibers well dispersed and randomly oriented in a plane. CMT composites offer substantial cost and weight savings over typical steel construction in new automotive applications. In production vehicles, automotive manufacturers have already begun to use glass mat thermoplastic (GMT) materials that use glass fiber as the reinforcement and polypropylene as the matrix. GMT parts have limitations due to the maximum achievable strength and stiffness of the material. In this study the glass fibers of traditional GMT are replaced with higher strength and higher stiffness carbon fibers. The tensile strength and modulus and the flexural strength and modulus of the CMT materials were calculated for fiber volume fractions of 10-25%. Additionally, the length of the fiber (12.7 mm or 25.4 mm) was varied and four different fiber treatments designed to improve the bond between the fiber and the matrix were tested. It was found that the fiber length had no effect on the mechanical properties of the material since these lengths are above the critical fiber length. The tensile and the flexural moduli of the CMTs were found to increase linearly with the FVF up to 25% FVF for some treatments of the fibers. For the other treatments the linearly increasing trend was valid up to 20% FVF, then stiffness either stayed constant or decreased as the FVF was increased from 20% to 25% . The strength versus FVF curves showed trends similar to those of the modulus versus FVF curves. It is shown that choosing an appropriate sizing can extend the usable FVF range of the CMT by at least 5%. Published micromechanical relations over-predicted the tensile modulus of the composite by 20-60%. An empirical fiber efficiency relation was fit to the experimental data for the tensile modulus and the tensile strength giving excellent agreement with the experimental results. Flow tests simulating the compression molding process were conducted on the CMT to determine what factors affect the flow viscosity of the CMT. The melt viscosity of the neat PP was measured using cone and plate rheometry at temperatures between 180°C–210°C and was fit with the Carreau relation. The through thickness packing stress of the CMT mat was measured for FVFs of 8-40% and was found to follow a power law behavior based on the local bending of fibers up to a FVF of 20.9%. Above this FVF the power law exponent decreases, and this is attributed to fracture of some of the fibers. Heated platens were used to isothermally squeeze the CMT at axial strain rates of 0.02-6 s^-1. The plot of the load-displacement behavior for the 10% FVF CMT was similar in shape to that for a fluid with a yield stress. For FVFs of 15-25% the load-displacement curves showed a load spike at the beginning of the flow, then followed the curve for a fluid with a yield stress. The matrix was burned off the squeezed samples, and the remaining carbon mat was dissected and visually inspected. It was found that fiber breakage increased and fiber length decreased as the FVF of the sample was increased. / Ph. D.
3

Fabrication and Structural Performance of Random Wetlay Composite Sandwich Panels

Glenn, Christopher Edward 27 June 2003 (has links)
The random wetlay process is used to make fiber-reinforced thermoplastic sheets that can be compression molded into composite panels at little cost. By utilizing these composite panels as the facesheets of honeycomb sandwich structures, it is possible to greatly increase the bending stiffness of the composite without adding significant weight. The random wetlay composite facesheets used in this research consisted of 25% E-glass fibers and 75% PET by weight. The thickness uniformity of the facesheets was difficult to control. The core of the sandwich structure was HexWeb&174; EM. Three low-cost adhesives were examined for secondarily bonding the facesheets to the core: polyurethane glue; epoxy paste; and 3M Scotch-Grip&174; plastic adhesive. The polyurethane glue mixed with Cab-O-Sil filler was easiest to apply and provided the largest flatwise tensile strength. Mathematical models were developed to predict the static behavior of sandwich beams and plates in bending. Three-point bend tests were performed on a sandwich beam in accordance with ASTM C 393. A sandwich plate simply supported along two opposite edges and free along the other two edges was subjected to a line-load using weights and a wiffle tree arrangement. An effective facesheet modulus and Poisson's ratio were found by comparing the measured displacements to the sandwich plate theory. The shadow moiré technique was used to visualize the displacement of the line-loaded sandwich plate. The overall shape of the displacement was very similar to the shape predicted by the sandwich plate theory. / Master of Science
4

Wetlaid Cellulose Fiber-Thermoplastic Hybrid Composites - Effects of Lyocell and Steam Exploded Wood Fiber Blends

Johnson, Richard Kwesi 27 July 2004 (has links)
Fiber hybridization involves the blending of high and low performance fibers in a common matrix to yield a composite with a balance of properties that cannot be achieved by using either fiber alone. In this study, the random wetlay process was used as a compounding method to investigate the effects of fiber hybridization on the mechanical, viscoelastic, and sorption characteristics of steam-exploded wood (SEW) and lyocell (high performance regenerated cellulose) fiber-reinforced polypropylene (PP) composites. The two fiber types were blended in varying proportions within a fixed total fiber content of 50 wt. % and compared with non-hybrid lyocell- and SEW-PP controls. Using PP matrix as basis, it was observed that moduli of all composites generally increased with increasing lyocell concentration, ranging from a minimum 66 % for SP 50 (SEW/PP control) to a maximum 233 % for LP 50 (lyocell/PP control). Ultimate strengths on the other hand, declined for SP 50 but increased with the inclusion of lyocell fibers. Comparisons of hybrid (having 5 - 20 wt % lyocell) with non-hybrid (having 25 - 50 wt. % lyocell) composites revealed a surprisingly greater strength and modulus-building efficiency (by as much as 2.6 times) in the hybrid composites. This observation indicated possible synergism between lyocell and SEW. Analyses of composite property gains as a function of fiber cost also showed greater cost benefits (highest for tensile modulus) in favor of hybridization. The advantages of fiber hybridization on composite properties were again evident under dynamic mechanical analysis where no significant differences in the storage moduli were found between a hybrid composite with 20 wt. % lyocell and a non-hybrid composite with 50 wt. % lyocell loading. Application of the time-temperature superposition principle (TTSP) made it possible to predict storage moduli over extended frequencies for PP and its composites. Comparison of shift factor versus temperature plots revealed decreasing relaxation times of PP with increasing lyocell concentration, which indicated that PP interacted better with lyocell than with SEW fibers. Finally, it was observed from sorption tests that hybrid composites absorbed less moisture than non-hybrid counterparts of either fiber type. The reasons for this observation were not apparent. It is however possible that moisture transport mechanisms within the composites may have been modified as a result of hybridization. / Master of Science

Page generated in 0.0423 seconds