101 |
Molecular simulation of the wetting of selected solvents on sand and clay surfacesNi, Xiao Unknown Date
No description available.
|
102 |
Experimental and Numerical Studies of Geosynthetic-reinforced Clays and Silts under Environmental induced SwellingPathak, Yadav Prasad 14 September 2009 (has links)
Current design guidelines for reinforced soil walls and slopes recommend the use of granular soils such as gravels and sands as select fills. Cost savings could potentially be realized by using on-site clays and silts. Some clays are swelling and silts are frost susceptible. When considering the use of swelling clays and frost susceptible silts as fills, environmental loading due to swelling-shrinkage and freeze-thaw effects from environmental changes could become a design issue.
To examine the hypothesis that consideration of environmental loading during design will produce improvements in the performance of geosynthetic-reinforced soil structures that use clays or silts as fill materials, experimental and numerical studies were undertaken. Geosynthetic-reinforced clay specimens were subjected to wetting and drying in a model test apparatus developed and commissioned for this study. In separate test set-up, reinforced silt specimens were subjected to freezing and thawing. Tests on unreinforced specimens were also performed in otherwise identical conditions for comparison purposes. Movements of the specimens, soil strains, reinforcement strains, soil suctions and soil temperatures were monitored during the application of environmental loading in addition to mechanical loading from external stresses.
The results of the laboratory model tests showed that reinforcements reduced horizontal displacements of the clay specimens during wetting and drying. The same is true for the case of silt during freezing and thawing. The environmental loading induced strains, and therefore stresses in the reinforcements. The measured geogrid strain during the wetting-drying of reinforced clay specimen was up to 0.75%. Similarly, the measured geogrid strain in the reinforced silt specimen during freezing-thawing cycles was up to 0.57%. The strains were greater than the strains generated by mechanical loading for the range of applied stresses used in this study.
Numerical models were developed to simulate wetting only induced swelling of reinforced clays and freezing only induced expansion of reinforced silts specimens. They were used to simulate the results of laboratory model tests. The performance of geosynthetic-reinforced soil slopes with swelling clay fills and frost susceptible silt fills was evaluated. Parametric studies were performed to determine important parameters affecting the performance of reinforced clay and silt slopes.
|
103 |
Experimental and Numerical Studies of Geosynthetic-reinforced Clays and Silts under Environmental induced SwellingPathak, Yadav Prasad 14 September 2009 (has links)
Current design guidelines for reinforced soil walls and slopes recommend the use of granular soils such as gravels and sands as select fills. Cost savings could potentially be realized by using on-site clays and silts. Some clays are swelling and silts are frost susceptible. When considering the use of swelling clays and frost susceptible silts as fills, environmental loading due to swelling-shrinkage and freeze-thaw effects from environmental changes could become a design issue.
To examine the hypothesis that consideration of environmental loading during design will produce improvements in the performance of geosynthetic-reinforced soil structures that use clays or silts as fill materials, experimental and numerical studies were undertaken. Geosynthetic-reinforced clay specimens were subjected to wetting and drying in a model test apparatus developed and commissioned for this study. In separate test set-up, reinforced silt specimens were subjected to freezing and thawing. Tests on unreinforced specimens were also performed in otherwise identical conditions for comparison purposes. Movements of the specimens, soil strains, reinforcement strains, soil suctions and soil temperatures were monitored during the application of environmental loading in addition to mechanical loading from external stresses.
The results of the laboratory model tests showed that reinforcements reduced horizontal displacements of the clay specimens during wetting and drying. The same is true for the case of silt during freezing and thawing. The environmental loading induced strains, and therefore stresses in the reinforcements. The measured geogrid strain during the wetting-drying of reinforced clay specimen was up to 0.75%. Similarly, the measured geogrid strain in the reinforced silt specimen during freezing-thawing cycles was up to 0.57%. The strains were greater than the strains generated by mechanical loading for the range of applied stresses used in this study.
Numerical models were developed to simulate wetting only induced swelling of reinforced clays and freezing only induced expansion of reinforced silts specimens. They were used to simulate the results of laboratory model tests. The performance of geosynthetic-reinforced soil slopes with swelling clay fills and frost susceptible silt fills was evaluated. Parametric studies were performed to determine important parameters affecting the performance of reinforced clay and silt slopes.
|
104 |
Molecular simulation of the wetting of selected solvents on sand and clay surfacesNi, Xiao 06 1900 (has links)
Molecular dynamics simulation and density functional theory were applied to calculate heats of immersion (Himm) of n-heptane, toluene, pyridine and water on two model sand surfaces and two model clay surfaces. Our results indicated that water showed the highest Himm for the model clay surfaces when multi-molecular water layers were used but the lowest when a single molecular layer was used. Simulations of a single molecular water layer sandwiched between a single molecular layer of the aforementioned organic compounds and the octahedral surface of clay indicated that the water layer was not stable. In particular, water molecules tended to desorb from the surface and clustered together to form water/water hydrogen bonds. Given the nature of bitumen molecules, the current results support the hypothesis that a pre-existing water layer on the sand and clay surfaces in raw oil sands is plausible so long as it is thick enough. / Chemical Engineering
|
105 |
Effect of progressive recycling on cellulose fiber surface propertiesBrancato, Adam Anthony 08 August 2008 (has links)
Hornification is the term used to describe the irreversible changes that occur in cellulose fibers due to recycling. While the effects of hornification have been documented, there are several conflicting hypotheses that attempt to explain the causes. In this research, AFM surface adhesion measurements made on virgin and recycled bleached kraft pulp show that recycling increases the apparent hydrophilicity of the fiber surface. Yet, the water retention values and tensile strength decrease as expected, which is consistent with internal cross-linking of the bonding sites and a reduction in hydrophilicity. Recycling does not affect the amount of monolayer water bound to the fiber surface indicating that the pore water is reduced but not the water bound to fiber surfaces. It is proposed that the contact area between the AFM tip and the fiber is greater for recycled material than for virgin. Image analysis of the fiber surface supports this conclusion, revealing a decrease in the surface roughness. The irregularity of fiber surfaces is apparent in AFM images at all but the smallest scales, with macroscopic fiber features dominating the roughness analyses of images larger than 2500 square nanometers. Hence, in this instance, the surface adhesion values are more a measure of the topography of the surface than of its chemistry. An application to newsprint is illustrated, revealing the limitations of AFM analysis of samples with a high degree of variability.
|
106 |
Photo-induced reversible changes in wettability on light sensitive pyrimidine-coated surfacesAbbott, Scott John January 2000 (has links)
Thin coatings of photoresponsive, pyrimidine-terminated molecules, attached to gold or quartz substrates in contact with water, undego photodimerisation and wettability changes when irradiated with UV light at 280 and 240mm. Spin-casting and chemisorption techniques were used to prepare the thin films. / Thesis (PhDApSc)--University of South Australia, 2000.
|
107 |
Photo-induced reversible changes in wettability on light sensitive pyrimidine-coated surfacesAbbott, Scott John January 2000 (has links)
Thin coatings of photoresponsive, pyrimidine-terminated molecules, attached to gold or quartz substrates in contact with water, undego photodimerisation and wettability changes when irradiated with UV light at 280 and 240mm. Spin-casting and chemisorption techniques were used to prepare the thin films. / Thesis (PhDApSc)--University of South Australia, 2000.
|
108 |
Analysis of lead free tin-silver-copper and tin-lead solder wetting reactionsAnson, Scott J. January 2007 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Dept. of Systems Science and Industrial Engineering, 2007. / Includes bibliographical references.
|
109 |
Oil recovery by spontaneous imbibition from mixed-wet rocksTong, Zhengxin. January 2005 (has links)
Thesis (Ph. D.)--University of Wyoming, 2005. / Title from PDF title page (viewed on Nov. 1, 2007). Includes bibliographical references (p. 179-192).
|
110 |
Solid-liquid mass transfer in trickle bed reactorsJoubert, Rita. January 2009 (has links)
Thesis (M.Eng.(Chemical engineering))--University of Pretoria, 2009. / Includes bibliographical references.
|
Page generated in 0.0665 seconds