• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Pneumatic Sensor for Grinding Wheel Condition Monitoring

Tanaka, Kevin M. 31 July 2014 (has links)
<p>Changes to the surface condition of a grinding wheel caused by excessive wear can result in geometric inaccuracy and severe thermal damage to a workpiece. As a precision metal removal process, grinding is typically a finishing operation and such errors are costly in both materials and lost time. Unfortunately grinding wheel performance is difficult to predict, and workpiece damage is commonly prevented by frequent dressing of the wheel surface. However, such over dressing is also costly in unnecessary machine down time and consumption of the grinding wheel. Monitoring systems have been developed in an effort to prevent damage to the workpiece and unnecessary dressing, but various difficulties have prevented any single system from achieving widespread application.</p> <p>The following body of research focuses on the investigation and development of a pneumatic sensor for monitoring the surface condition of a grinding wheel. These sensors are relatively simple, robust and inexpensive, and well suited to in situ applications. While these sensors are traditionally used to measure displacement of static or quasi-static surfaces, research into dynamic applications has shown they can detect the features or topography of a moving surface. Inspired by these developments, a monitoring method employing both the static and dynamic measurement capabilities of the sensor is proposed with applications to both metal-bonded and vitrified grinding wheels.</p> / Master of Applied Science (MASc)
2

Influence of Switches and Crossings on Wheel Wear of a Freight Vehicle

Doulgerakis, Emmanouil January 2013 (has links)
Turnouts (Switches &amp; Crossings) are important components in railway networks, as they provide the necessary flexibility for train operations by allowing trains to change among the tracks. But the turnout’s geometry with discontinuity in rail profiles and lack of transition curve causes additional wear both on track and on vehicle. The main goal of this MSc thesis is to investigate the influence of turnouts on wheel wear of a freight vehicle. This will be obtained by simulations in the commercial MBS software GENSYS. The wheel-rail contact is modelled according to Hertz’s theory and Kalker’s simplified theory, with the FASTSIM algorithm, and the wear calculations are performed according to Archard’s law. Wheel wear is estimated by considering variations in parameters which have effect on wheel-rail contact. All these variations are common in daily rail operation, and they are caused by it, i.e. worn wheel profiles, worn crossing nose and different stiffness of the stock and the switch rails at the beginning of the turnout. Moreover, the wheel wear is calculated for both possible directions which a vehicle can run, the diverging and the straight direction of the turnout. Especially for the straight direction, various running speeds have been tested as the speed limit when the vehicle follows the straight direction is higher than for the diverging part. Running with worn wheel profiles has the greatest impact in terms of increasing the wheel wear, especially on the outer part of wheel tread. In addition, the worn crossing nose results in increased wheel wear in this area. The results of the simulations concerning the different stiffness showed that the wheel wear caused by the contact of wheel and stock rail increases whereas the wear caused by the contact with the switch rail is kept at about the same level or decreases. It is concluded that turnouts have a significant impact on wheel wear, mainly because of the discontinuity in rail geometry and all the investigated parameters increase this impact. Moreover, great differences in wear values for areas close to each other are observed, mainly because of the wear coefficient values chosen in Archard’s wear map.
3

Wheel Wear Simulation of the Light Rail Vehicle A32

Robla Sánchez, Ignacio January 2010 (has links)
During the last decade, a novel methodology for wheel wear simulation has been developed in Sweden. The practical objective of this simulation procedure is to provide an integratedengineering tool to support rail vehicle design with respect to wheel wear performance and detailed understanding of wheel-rail interaction. The tool is integrated in a vehicle dynamicssimulation environment.The wear calculation is based on a set of dynamic simulations, representing the vehicle, the network, and the operating conditions. The wheel profile evolution is simulated in an iterativeprocess by adding the contribution from each simulation case and updating the profile geometry.The method is being validated against measurements by selected pilot applications. To strengthen the confidence in simulation results the scope of application should be as wide aspossible in terms of vehicle classes. The purpose of this thesis work has been to try to extend the scope of validation of this method into the light rail area, simulating the light rail vehicleA32 operating in Stockholm commuter service on the line Tvärbanan.An exhaustive study of the wear theory and previous work on wear prediction has been necessary to understand the wear prediction method proposed by KTH. The dynamicbehaviour of rail vehicles has also been deeply studied in order to understand the factors affecting wear in the wheel-rail contact.The vehicle model has been validated against previous studies of this vehicle. Furthermore new elements have been included in the model in order to better simulate the real conditionsof the vehicle.Numerous tests have been carried out in order to calibrate the wear tool and find the settings which better match the real conditions of the vehicle.Wheel and rail wear as well as profile evolution measurements were available before this work and they are compared with those results obtained from the simulations carried out.The simulated wear at the tread and flange parts of the wheel match quite well the measurements. However, the results are not so good for the middle part, since themeasurements show quite evenly distributed wear along the profile while the results from simulations show higher difference between extremes and middle part. More tests would benecessary to obtain an optimal solution.
4

Accurate Wheel-rail Dynamic Measurement using a Scaled Roller Rig

Kothari, Karan 08 August 2018 (has links)
The primary purpose of this study is to perform accurate dynamic measurements on a scaled roller rig designed and constructed by Virginia Tech and the Federal Railroad Administration (VT-FRA Roller Rig). The study also aims at determining the effect of naturally generated third-body layer deposits (because of the wear of the wheel and/or roller) on creep or traction forces. The wheel-rail contact forces, also referred to as traction forces, are critical for all aspects of rail dynamics. These forces are quite complex and they have been the subject of several decades of research, both in experiments and modeling. The primary intent of the VT-FRA Roller Rig is to provide an experimental environment for more accurate testing and evaluation of some of the models currently in existence, as well as evaluate new hypothesis and theories that cannot be verified on other roller rigs available worldwide. The Rig consists of a wheel and roller in a vertical configuration that allows for closely replicating the boundary conditions of railroad wheel-rail contact via actively controlling all the wheel-rail interface degrees of freedom: angle of attack, cant angle, normal load and lateral displacement, including flanging. The Rig has two sophisticated independent drivelines to precisely control the rotational speed of the wheels, and therefore their relative slip or creepage. The Rig benefits from a novel force measurement system, suitable for steel on steel contact, to precisely measure the contact forces and moments at the wheel-rail contact. Experimental studies are conducted on the VT ��" FRA Roller Rig that involved varying the angle of attack, wheel and rail surface lubricity condition (i.e., wet vs. dry rail), and wheel wear, to study their effect on wheel-rail contact mechanics and dynamics. The wheel-rail contact is in between a one-fourth scale AAR-1B locomotive wheel and a roller machined to US-136 rail profile. A quantitative assessment of the creep-creepage measurements, which is an important metric to evaluate the wheel-rail contact mechanics and dynamics, is presented. A MATLAB routine is developed to generate the creep-creepage curves from measurements conducted as part of a broad experimental study. The shape of the contact patch and its pressure distribution have been discussed. An attempt is made to apply the results to full-scale wheels and flat rails. The research results will help in the development of better simulation models for non-Hertzian contact and non-linear creep theories for wheel-rail contact problems that require further research to more accurately represent the wheel-rail interaction. / MS / Rail vehicles are supported, steered, accelerated, and decelerated by contact forces acting in extremely small wheel-rail contact areas. The behavior of these forces is quite complex and a broad interdisciplinary research is needed to understand and optimize the contact mechanics and dynamics problem. Key industry issues, such as control of Rolling Contact Fatigue (RCF), maximizing wheelset mileages, and minimizing the impact of rolling stock on the infrastructure, are directly related to the interaction at the wheel-rail contact. The Rig consists of a wheel and roller in a vertical configuration that allows for closely replicating the boundary conditions of railroad wheel-rail contact via actively controlling all the wheel-rail interface degrees of freedom: angle of attack, cant angle, normal load and lateral displacement, including flanging. The Rig has two sophisticated independent drivelines to precisely control the rotational speed of the wheels, and therefore their relative slip or creepage. The Rig benefits from a novel force measurement system, suitable for steel on steel contact, to precisely measure the contact forces and moments at the wheel-rail contact. The primary purpose of this study is to perform accurate dynamic measurements on a scaled roller rig designed and constructed by Virginia Tech and the Federal Railroad Administration (VT-FRA Roller Rig). Experimental studies are conducted on the VT – FRA Roller Rig that involved varying the angle of attack, the wheel and rail surface lubricity condition (i.e., wet vs. dry rail), and the wheel wear to study their effects on wheel-rail contact mechanics and dynamics. The wheel-rail contact is in between a one-fourth scale AAR-1B locomotive wheel and a roller machined to US-136 rail profile. A quantitative assessment of the creep-creepage measurements, which is an important metric to evaluate the wheel-rail contact mechanics and dynamics, is presented. A MATLAB routine is developed to generate the creep-creepage curves from measurements conducted as part of a broad experimental study. The shape of the contact patch and its pressure distribution have been discussed. An attempt is made to apply the results to full-scale wheels and flat rails. The research results will help in the development of better simulation models for non-Hertzian contact and non-linear creep theories for wheel-rail contact problems that require further research to more accurately represent the wheel-rail interaction.
5

Rotary ultrasonic machining of hard-to-machine materials

Churi, Nikhil January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Zhijian Pei / Titanium alloy is one of the most important materials used in major segments of industries such as aerospace, automobile, sporting goods, medical and chemical. Market survey has stated that the titanium shipment in the USA has increased significantly in last two decades, indicating its increased usage. Industries are always under tremendous pressure to meet the ever-increasing demand to lower cost and improve quality of the products manufactured from titanium alloy. Similar to titanium alloys, silicon carbide and dental ceramics are two important materials used in many applications. Rotary ultrasonic machining (RUM) is a non-traditional machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining. It comprises of a tool mounted on a rotary spindle attached to a piezo-electric transducer to produce the rotary and ultrasonic motion. No study has been reported on RUM of titanium alloy, silicon carbide and dental ceramics. The goal of this research was to provide new knowledge of machining these hard-to-machine materials with RUM for further improvements in the machining cost and surface quality. A thorough research has been conducted based on the feasibility study, effects of tool variables, effects of machining variables and wheel wear mechanisms while RUM of titanium alloy. The effects of machining variables (such as spindle speed, feed rate, ultrasonic vibration power) and tool variables (grit size, diamond grain concentration, bond type) have been studied on the output variables (such as cutting force, material removal rate, surface roughness, chipping size) and the wheel wear mechanisms for titanium alloy. Feasibility of machining silicon carbide and dental ceramics is also conducted along with a designed experimental study.

Page generated in 0.0675 seconds