• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 8
  • 5
  • 4
  • 1
  • Tagged with
  • 50
  • 37
  • 22
  • 17
  • 11
  • 10
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Whispering gallery modes in quantum dot-embedded dielectric microspheres for tagless remote refractometric sensing

Pang, Shuo 10 October 2008 (has links)
This thesis presents the development of a refractometric sensor based on quantum dot-embedded polystyrene microspheres. The technique uses optical resonances within a microsphere, known as Whispering-Gallery Modes (WGMs), which produce narrow spectral peaks. The basic theory of WGMs is reviewed and specifically discussed for biosensing application. The spectral shifts of WGM peaks are sensitive to changes in the local refractive index. In the experiments, two-photon excited luminescence from the quantum dots couples into several WGMs within the microresonator. By optimizing the detection area, the spectral visibility of the WGMs is improved. The spectral shifts are measured as the surrounding index of refraction changes. The experimental sensitivity is about five times greater than that predicted by Mie theory. The sensor element is based on commercially available dielectric microspheres with a diameter about 10 μm. Thus, the technique is more economic and suitable for sensing applications, compared to microspheres of 100 μm in size which can only be made in the laboratory.
2

Design and Analysis of Whispering Gallery Mode Semiconductor Lasers

Hajjiah, Ali T. 27 February 2009 (has links)
Significant technical barriers currently prevent the wide spread adoption of WGM lasers as building blocks in large-scale photonic integrated circuits. The first challenge is to reduce the electrical power consumption at desirable levels of light output power. The second target is to obtain directional light emission without sacrificing other laser performance metrics. The best opportunity for success lies in the pursuit of small micro-Pillar lasers with spiral-geometry cavities. Process technology has been demonstrated for making high-performance WGM lasers including a refined ICP etching process for fabricating micro-Pillar cavities with sidewall roughness less than 10 nm and a new hydrogenation based approach to achieving current blocking that is compatible with all other processing steps and robust in comparison with earlier reports. A comprehensive photo-mask has been designed that enables investigation of the interplay between device geometry and WGM laser performance. Emphasis has been placed on enabling experiments to determining the impact of diffraction and scattering losses, current and carrier confinement, and surface recombination on electrical/optical device characteristics. In addition, a methodology has been developed for separating out process optimization work from the task of identifying the best means for directional light out-coupling. Our device fabrication methods can be proven on WGM lasers with pure cylindrical symmetry, hence results from these experiments should be independent of any specific light output coupling scheme. Particular attention has been paid to the fact that device geometries that give the best performance for purely symmetrical cavities may not yield the highest level of light emission from the spiral output notch. Such considerations seem to be missing from much of the earlier work reported in the literature. Finally, our processing techniques and device designs have resulted in individual WGM lasers that outperform those made by competitors. These devices have been incorporated into multi-element, coupled-cavity optical circuits thereby laying the groundwork for construction of digital photonic gates that execute AND, OR, and NOT logic functions. / Ph. D.
3

Human or Horse? : Anthropomorphic and Zoomorphic Instances in The Horse Whisperer

Pigney, Emma January 2015 (has links)
This essay aims to show how anthropomorphism, and also to some extent zoomorphism, is created in Nicholas Evans’s novel The Horse Whisperer.  Through parallel events and the usage of the concepts horse whisperers and horse whispering, a special connection is created between Grace, the main human character, and Pilgrim, the main horse character. This essay argues that their connection grounds for the reader to see the horse anthropomorphically and the human to some extent zoomorphically. With the use of Daston and Mitman’s notions of anthropomorphism and zoomorphism, this essay analyses how the concepts manifest themselves in the novel. The definition of horse whisperers and horse whisperering within this essay derives from the work of Brannaman and Parelli, this due to their theoretical value and knowledge about horse whispering.
4

Enhanced high Q whispering gallery resonator sensing

Yu, Wenyan 22 August 2012 (has links)
This thesis presents a novel method to fabricate metallic nanostructures on whispering gallery mode (WGM) cavity surfaces. The unique properties of WGM cavities have shown their promising future in both fundamental research and engineering applications. High sensitivity biosensors are one of the most important applications. Thanks to their ultra high quality factor (Q) and small optical mode volume, the resonant frequency shift of a single nanoparticle binding becomes detectable. The basic principles of a WGM cavity and its coupling mechanism with an optical coupler are discussed in detail. From the WGM sensing principle, people have demonstrated the positive contributions of the surface plasmon to the sensitivity. Furthermore, we implement the localized surface plasmon resonance (LSPR) on the cavity surface by depositing metallic dots. We use the focused ion beam (FIB) to directly deposit metallic nanodots on the spherical cavity surface for the first time. The quality factor of the cavity with metallic dots is above 10^7 in both air and water, which is more than one order larger than other published results. Also, the new method is much more controllable and repeatable than previous methods. It reveals a new fabrication method for potential ultra sensitive sensors based on WGM cavities. In addition, we offer a new mode solver for the toroidal WGM cavity. The microtoroid is a better platform for further investigation of WGM sensing than the microsphere. By expanding cavity modes to a set of normal fiber modes, we formulate the new mode solver based on simple physical principles. The simulation results of the radiative quality factor based on the new mode solver are presented as well. / Graduate
5

Ytterbium-Doped Microsphere Lasers

Michael Dalley Unknown Date (has links)
This thesis covers the construction and characterisation of microlasers based on whispering gallery modes in ytterbium-doped microsphere resonators. The microlasers were made by drawing and fusing Yb-doped silica optical fibre into microspheres of approximately 100 μmin diameter using CO2 laser-induced melting. Access to whispering gallery modes was accomplished using a prism coupled to the evanescent field of the internal cavity modes. Microspheres with Q-factors of up to 10^7 were made using this technique. CW multimode lasing was observed at 1050 nm, with a pump threshold required for lasing estimated to be of the order of 100 μW for a 900 nm pump. Both TE and TM modes were identified in the laser emission and the ability to selectively excite each mode family (TE or TM) is shown to be directly controlled by the pump. Pulsed lasing was also observed at 975 nm and 1050 nm.
6

Coupling Nitrogen Vacancy Centers in Diamond Nanopillars Whispering Gallery Microresonators

Dinyari, Khodadad 11 July 2013 (has links)
For cavity quantum electrodynamics systems (cavity-QED) to play a role in quantum information processing applications and in quantum networks, they must be robust and scalable in addition to having a suitable method for the generation, processing and storage of quantum bits. One solution is to develop a composite system that couples a nitrogen vacancy (NV) center in diamond to a whispering gallery mode supported by a fused silica microsphere. Such a system is motivated by the optical and electron-spin properties of the NV center. The NV center is the leading spin-qubit and exhibits atomic like linewidths at cryogenic temperatures and has spin coherence times greater than milliseconds at room temperature. These long coherence times, coupled with nanosecond scale spin readout and manipulation times, allow for millions of quantum operations to be processed. Silica whispering gallery resonators are the only class of microresonators with quality factor high enough to reach the strong coupling regime, which is necessary for some quantum information processing applications. Integrating these two components into a system that could position a diamond nanopillar near the surface of a deformed-double stemmed microsphere system, with nanometer precision, at 10 K was a major achievement of this research. Cavity resonances in deformed microspheres can be excited with a free-space coupling technique which simplifies their integration into cryogenic environments. In these intentionally deformed resonators, an enhanced evanescent field decay length was observed at specific locations along the ray orbit. The double-stem arrangement enables the cavity resonance to be tuned over 450 GHz, with sub-10 MHz resolution, at 10 K. These two features, the enhanced decay length and broad range tuning with high resolution, are indispensible tools for cavity-QED studies with silica microspheres. Diamond nanopillars were fabricated from single crystal diamond with diameters as small as 140 nm in order to maintain a high quality factor. Studies were conducted on NV centers in nanopillars and bulk diamond to determine their suitability for cavity-QED applications. In an attempt to increase the light-matter interaction between NV centers and whispering gallery modes, diamond substrates were optically characterized that were irradiated with nitrogen ions.
7

Application of Alkylsilane Self-Assembled Monolayers for Cell Patterning and Development of Biolocial Microelectromechanical Systems

Wilson, Kerry 01 January 2009 (has links) (PDF)
Advances in microfabrication and surface chemistry techniques have provided a new paradigm for the creation of in vitro systems for studying problems in biology and medicine in ways that were previously not practical. The ability to create devices with micro- to nano-scale dimensions provides the opportunity to non-invasively interrogate and monitor biological cells and tissue in large arrays and in a high-throughput manner. These systems hold the potential to, in time, revolutionize the way problems in biology and medicine are studied in the form of point-of-care devices, lab-on-chip devices, and biological microelectromechanical systems (BioMEMS). With new in vitro models, it will be possible to reduce the overall cost of medical and biological research by performing high-throughput experiments while maintaining control over a wide variety of experimental variables. A critical aspect of developing these sorts of systems, however, is controlling the device/tissue interface. The surface chemistry of cell-biomaterial and protein-biomaterial interactions is critical for long-term efficacy and function of such devices. The work presented here is focused on the application of surface and analytical chemistry techniques for better understanding the interface of biological elements with silica substrates and the development a novel Bio-MEMS device for studying muscle and neuromuscular biology. A novel surface patterning technique based on the use of a polyethylene glycol (PEG) silane self-assembled monolayer (SAM) as a cytophobic surface and the amine-terminated silane diethyeletriamine (DETA) as a cytophilic surface was developed for patterning a variety of cell types (e.g. skeletal muscle, and neural cells) over long periods of time (over 40 days) with high fidelity to the patterns. This method was then used to pattern embryonic rat skeletal muscle and motor neurons onto microfabricated silicon cantilevers creating a novel biological microelectromechanical system (BioMEMS) for studying muscle and the neuromuscular junction. This device was then used to study the effect of exogenously applied substances such as growth factors and toxins. Furthermore, a whispering-gallery mode (WGM) biosensor was developed for measuring the adsorption of various proteins onto glass microspheres coated with selected silane SAMS commonly used in BioMEMS system. With this biosensor it was possible to measure the kinetics of protein adsorption onto alkylsilane SAMS, in a real-time and label-free manner.
8

Horses for courses: exploring the limits of leadership development through equine-assisted learning

Kelly, Simon 20 May 2013 (has links)
Yes / This essay draws on insights taken from Lacanian psychoanalysis to rethink and resituate notions of the self and subjectivity within the theory and practice of experiential leadership development. Adopting an auto-ethnographic approach, it describes the author’s own experience as a participant in a programme of equine assisted learning or ‘horse whispering’ and considers the consequences of human-animal interactions as a tool for self-development and improvement. Through an analysis of this human/animal interaction, the essay presents and applies three Lacanian concepts of subjectivity, desire and fantasy and considers their form and function in determining the often fractured relationship between self and other that characterises leader-follower relations.
9

Fabricação de micro-ressonadores ópticos via fotopolimerização por absorção de dois fótons / Fabrication of whispering gallery mode microresonators via two-photon polymerization

Tomazio, Nathália Beretta 24 February 2016 (has links)
Os micro-ressonadores que suportam whispering gallery modes têm atraído a atenção da comunidade científica devido a sua grande capacidade de confinar a luz, propriedade que faz dessas estruturas plataformas ideais para o desenvolvimento de pesquisa fundamental como interação da radiação com a matéria e óptica não linear. Além disso, suas características como operação em frequências do visível e de telecomunicações, facilidade de integração e alta sensitividade os tornam extremamente flexíveis para aplicações que vão desde filtros ópticos até sensores. Neste trabalho, demonstramos a fabricação de tais micro-ressonadores via fotopolimerização por absorção de dois fótons (FA2F). Esta técnica apresenta uma série de vantagens para a confecção de micro-dispositivos, sendo elas a capacidade de resolução inferior ao limite de difração, a flexibilidade de formas e ainda, a possibilidade de incorporar compostos de interesse à matriz polimérica a fim de introduzir novas funcionalidades ao material que compõe a estrutura final. Ademais, diferentes polímeros podem ser utilizados para a fabricação das microestruturas, tornando a técnica viável para uma vasta gama de aplicações. As microestruturas poliméricas que fabricamos são micro-cilindros ocos de boa integridade estrutural com 45 μm de diâmetro externo e 100 nm de rugosidade de superfície, o que as torna potencialmente aplicáveis como micro-ressonadores para frequências de operação típicas de telecomunicações. A fim de acoplar luz nessas estruturas, em colaboração com a Universidade de Valência, na Espanha, montamos um aparato de acoplamento. Neste aparato, a luz proveniente de uma fonte de luz centrada em 1540 nm é acoplada nos micro-ressonadores via campo evanescente por meio do uso de uma fibra óptica estirada de 1.5 μm de diâmetro. A potência transmitida é guiada para um analisador de espectro óptico, onde é possível identificar os modos ressonantes, representados como picos de atenuação com free spectral range em torno de 9.8 nm. Ao término desse projeto, um aparato similar foi montado no Grupo de Fotônica do IFSC/USP, a partir do qual pudemos medir os modos ressonantes tanto de fibras ópticas estiradas quanto dos micro-cilindros poliméricos. A finesse dos micro-ressonadores poliméricos caracterizados varia de 2.51 a 4.35, sendo da mesma ordem de grandeza do valor reportado na literatura para ressonadores de alta performance fabricados por FA2F a partir da mesma formulação de resina polimérica que utilizamos. / Whispering gallery modes microresonators have been attracting increasing interest due to their ability to strongly confine light within small dielectric volumes. This property is quite useful for basic research involving light-matter interaction and nonlinear optics, but their applications go beyond that. The ease of fabrication, on-chip integration and operation at telecommunication frequencies make them suitable for a variety of practical applications, including photonic filters and sensing. In the current work, we demonstrate the fabrication of such resonators via two-photon polymerization. Using this technique, complex 3D structures with submicrometer feature size can be produced. Besides, the flexibility of geometry and the possibility of incorporating a variety of additional materials, such as organic compounds make it a powerful tool for the fabrication of microresonators. The microstructures we have fabricated are 45 μm outer diameter hollow microcylinders, with good structural integrity and sidewall roughness estimated in 100 nm, which make their application as microresonators feasible in the near infrared wavelength regime. In order to couple light within these microresonators, an experimental setup was built at University of Valencia to implement the coupling. In this setup, light from a 1540 nm-centered broadband source was coupled into the fabricated microresonators via evanescent field using a 1.5 μm waist tapered fiber. The transmitted light was then guided to an optical spectral analyzer, where it was possible to measure resonances, represented as attenuation peaks, with free spectral range of about 9.8 nm. Afterwards, a similar experimental setup was assembled in the Photonics group at IFSC/USP, where we could observe resonances of both tapered optical fibers and the polymeric microresonators fabricated by means of two-photon polymerization. The finesse of the polymeric microresonators was estimated in 4.35, being in the same order of the finesse reported in the literature for high performance microring resonators fabricated using the same polymeric resin.
10

Fabricação de micro-ressonadores ópticos via fotopolimerização por absorção de dois fótons / Fabrication of whispering gallery mode microresonators via two-photon polymerization

Nathália Beretta Tomazio 24 February 2016 (has links)
Os micro-ressonadores que suportam whispering gallery modes têm atraído a atenção da comunidade científica devido a sua grande capacidade de confinar a luz, propriedade que faz dessas estruturas plataformas ideais para o desenvolvimento de pesquisa fundamental como interação da radiação com a matéria e óptica não linear. Além disso, suas características como operação em frequências do visível e de telecomunicações, facilidade de integração e alta sensitividade os tornam extremamente flexíveis para aplicações que vão desde filtros ópticos até sensores. Neste trabalho, demonstramos a fabricação de tais micro-ressonadores via fotopolimerização por absorção de dois fótons (FA2F). Esta técnica apresenta uma série de vantagens para a confecção de micro-dispositivos, sendo elas a capacidade de resolução inferior ao limite de difração, a flexibilidade de formas e ainda, a possibilidade de incorporar compostos de interesse à matriz polimérica a fim de introduzir novas funcionalidades ao material que compõe a estrutura final. Ademais, diferentes polímeros podem ser utilizados para a fabricação das microestruturas, tornando a técnica viável para uma vasta gama de aplicações. As microestruturas poliméricas que fabricamos são micro-cilindros ocos de boa integridade estrutural com 45 μm de diâmetro externo e 100 nm de rugosidade de superfície, o que as torna potencialmente aplicáveis como micro-ressonadores para frequências de operação típicas de telecomunicações. A fim de acoplar luz nessas estruturas, em colaboração com a Universidade de Valência, na Espanha, montamos um aparato de acoplamento. Neste aparato, a luz proveniente de uma fonte de luz centrada em 1540 nm é acoplada nos micro-ressonadores via campo evanescente por meio do uso de uma fibra óptica estirada de 1.5 μm de diâmetro. A potência transmitida é guiada para um analisador de espectro óptico, onde é possível identificar os modos ressonantes, representados como picos de atenuação com free spectral range em torno de 9.8 nm. Ao término desse projeto, um aparato similar foi montado no Grupo de Fotônica do IFSC/USP, a partir do qual pudemos medir os modos ressonantes tanto de fibras ópticas estiradas quanto dos micro-cilindros poliméricos. A finesse dos micro-ressonadores poliméricos caracterizados varia de 2.51 a 4.35, sendo da mesma ordem de grandeza do valor reportado na literatura para ressonadores de alta performance fabricados por FA2F a partir da mesma formulação de resina polimérica que utilizamos. / Whispering gallery modes microresonators have been attracting increasing interest due to their ability to strongly confine light within small dielectric volumes. This property is quite useful for basic research involving light-matter interaction and nonlinear optics, but their applications go beyond that. The ease of fabrication, on-chip integration and operation at telecommunication frequencies make them suitable for a variety of practical applications, including photonic filters and sensing. In the current work, we demonstrate the fabrication of such resonators via two-photon polymerization. Using this technique, complex 3D structures with submicrometer feature size can be produced. Besides, the flexibility of geometry and the possibility of incorporating a variety of additional materials, such as organic compounds make it a powerful tool for the fabrication of microresonators. The microstructures we have fabricated are 45 μm outer diameter hollow microcylinders, with good structural integrity and sidewall roughness estimated in 100 nm, which make their application as microresonators feasible in the near infrared wavelength regime. In order to couple light within these microresonators, an experimental setup was built at University of Valencia to implement the coupling. In this setup, light from a 1540 nm-centered broadband source was coupled into the fabricated microresonators via evanescent field using a 1.5 μm waist tapered fiber. The transmitted light was then guided to an optical spectral analyzer, where it was possible to measure resonances, represented as attenuation peaks, with free spectral range of about 9.8 nm. Afterwards, a similar experimental setup was assembled in the Photonics group at IFSC/USP, where we could observe resonances of both tapered optical fibers and the polymeric microresonators fabricated by means of two-photon polymerization. The finesse of the polymeric microresonators was estimated in 4.35, being in the same order of the finesse reported in the literature for high performance microring resonators fabricated using the same polymeric resin.

Page generated in 0.0851 seconds