• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 11
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 69
  • 16
  • 15
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Novel Bioconversion Reactions For The Syntheses Of A-hydroxy Ketones

Ayhan, Peruze 01 January 2009 (has links) (PDF)
The objective of the study presented here was to develop either enzymatic or whole cell mediated green procedures for the syntheses of a-hydroxy ketones. Production of optically active synthons is crucial for the preparation of fine chemicals. Enzymes and whole-cell biocatalysts have proven to be excellent vehicles with their chiral nature for the biotransformations. Under the light of this discussion, firstly benzaldehyde lyase [BAL, (EC 4.1.2.38)] was used in novel C-C bond formation reactions to obtain interesting and biologically important precursors / 2-Hydroxy-1-arylethan-1-ones and functionalized aliphatic acyloin derivatives. All the compounds were obtained with high yields and in the case of aliphatic acyloin derivatives with high enantiomeric excesses (ee&rsquo / s). Another strategy was to use whole cell biocatalysis. A.flavus 200120 was found to be a promising biocatalyst with the ability to catalyze a broad range of reactions / reduction, hydrolysis and deracemization, while another fungus / A. oryzae 5048 was utilized in bioreduction reactions of benzil and its derivatives. Each reaction was investigated, optimized and thus enhanced via medium design. Products were obtained with high yields and ee&rsquo / s. To sum up, in this study novel efficient green procedures were developed to synthesize various ahydroxy ketones with high yield and stereoselectivity. These newly established methods present promising alternatives to classical chemical methodologies.
22

Whole Cell Bacterial Biosensor for Glutamine and Applications to Plants and Microbes

Tessaro, Michael 03 February 2012 (has links)
Glutamine (Gln) is a critical intermediate in nitrogen metabolism in all organisms. Here, a whole cell biosensor (GlnLux) for Gln was constructed by transforming a bacterial Gln auxotroph with a constitutive lux reporter. The biosensor was optimized for sensitivity, linearity, efficiency, specificity and robustness to permit detection of Gln in vitro and in vivo. The optimized GlnLux biosensor achieved nanomolar sensitivity with Gln standards. Extracts from only 1 mg of maize (Zea mays L.) leaf tissue were sufficient for Gln detection by GlnLux. Measurements of Gln in leaf extracts by GlnLux correlated with quantification by high performance liquid chromatography (Spearman r = 0.95). GlnLux permitted indirect in planta imaging of Gln using a CCD camera, enabling identification of plants that had been fertilized with nitrogen. Imaging using GlnLux also resolved predicted spatial differences in leaf Gln concentration. In a second application, it was demonstrated that GlnLux embedded into agar permits non-destructive screening of co-inoculated bacterial colonies for biological nitrogen fixation (BNF). GlnLux agar was able to distinguish a Bradyrhizobium japonicum wild type strain (nif+) from a mutant strain defective in nitrogenase (nif-) following ≥8 h of co-incubation. The technology was used to screen a bacterial endophyte diversity library cultured from Zea mays (L.) seeds for biological nitrogen fixation. / OMAFRA
23

Cerebellar pathophysiology in a mouse model of Duchenne muscular dystrophy

Snow, Wanda Mae 13 November 2012 (has links)
This series of experiments investigated dystrophin localization in the normal cerebellum and examined Purkinje neuron function in normal and dystrophin-deficient mice to better understand the physiological basis for cognitive deficits associated with Duchenne muscular dystrophy (DMD), a common genetic disorder among children. Cognitive impairments are consistently reported in DMD, yet precise mechanisms for their occurrence are unknown. Dystrophin protein, which is absent in DMD, is normally localized to muscles and specific neurons in the brain. Purkinje neurons are rich in dystrophin, specifically in somatic and dendritic membranes. Studies demonstrate perturbed cerebellar function in the absence of dystrophin, suggesting that DMD should be regarded as a cerebellar disorder in addition to being considered a neuromuscular disorder. However, theory and evidence are not generated from overlapping information: research investigating cerebellar involvement in DMD has focused on the vermal region, associated with motor function. The lateral region, implicated in cognition, has not been explicitly examined in DMD. The first experiment revisited the issue of dystrophin distribution in the mouse cerebellum using immunohistochemistry to investigate qualitative and quantitative differences between cerebellar regions. Both regions showed dystrophin localized to Purkinje neuron somatic and dendritic membranes, but dystrophin density was 30% greater in the lateral than the vermal region. The second experiment examined intrinsic electrophysiological properties of vermal and lateral Purkinje neurons from wild-type (WT) mice and from the mdx mouse model of DMD which lack dystrophin. Significant differences in action potential firing frequency, regularity, and shape were found between cerebellar regions. Purkinje neurons from mdx mouse cerebellum exhibited membrane hyperpolarization and irregular action potential firing, regardless of region. Spontaneous action potential firing frequency was reduced in Purkinje neurons from lateral cerebellum in mdx mice relative to controls, demonstrating that a loss of dystrophin causes a potent dysregulation of Purkinje neuron function in the region associated with cognition. This research extends our understanding of cerebellar pathology in DMD and its potential relevance to cognitive deficits in the disorder. Moreover, this research further supports the role of the cerebellum as a structure important for cognition and contributes to our understanding of dystrophin’s role in the brain.
24

STABILITY OF SPORE-BASED SENSING SYSTEMS

Sangal, Abhishek 01 January 2010 (has links)
The full exploitation of bacterial whole-cell biosensing systems in field applications requires the survival of bacterial cells and long term-preservation of their sensing ability during transportation and on-site storage of such analytical systems. Specifically, there is a need for rapid, simple and inexpensive biosensing systems for monitoring human health and the environment in remote areas which often suffer from harsh atmospheric conditions and inadequate commercial distribution and storage facilities. Our laboratory has previously reported the successful use of bacterial spores as vehicles for the long-term preservation and storage of whole-cell biosensing systems at room temperature. In the present research, we have accomplished a year-long study to investigate the effect of extreme climatic conditions on the stability of spores-based whole-cell biosensing systems. The spores were stored in laboratory conditions that simulated those found in real harsh environments and germination ability and analytical performance of the spore-based sensing systems upon storage in such conditions was monitored. Our results proved that the intrinsic resistance of spores to harsh environmental conditions helped maintain the integrity of the sensor bacteria. The revived active cells actually retained their analytical performance during the course of the twelve-month storage study.
25

Cerebellar pathophysiology in a mouse model of Duchenne muscular dystrophy

Snow, Wanda Mae 13 November 2012 (has links)
This series of experiments investigated dystrophin localization in the normal cerebellum and examined Purkinje neuron function in normal and dystrophin-deficient mice to better understand the physiological basis for cognitive deficits associated with Duchenne muscular dystrophy (DMD), a common genetic disorder among children. Cognitive impairments are consistently reported in DMD, yet precise mechanisms for their occurrence are unknown. Dystrophin protein, which is absent in DMD, is normally localized to muscles and specific neurons in the brain. Purkinje neurons are rich in dystrophin, specifically in somatic and dendritic membranes. Studies demonstrate perturbed cerebellar function in the absence of dystrophin, suggesting that DMD should be regarded as a cerebellar disorder in addition to being considered a neuromuscular disorder. However, theory and evidence are not generated from overlapping information: research investigating cerebellar involvement in DMD has focused on the vermal region, associated with motor function. The lateral region, implicated in cognition, has not been explicitly examined in DMD. The first experiment revisited the issue of dystrophin distribution in the mouse cerebellum using immunohistochemistry to investigate qualitative and quantitative differences between cerebellar regions. Both regions showed dystrophin localized to Purkinje neuron somatic and dendritic membranes, but dystrophin density was 30% greater in the lateral than the vermal region. The second experiment examined intrinsic electrophysiological properties of vermal and lateral Purkinje neurons from wild-type (WT) mice and from the mdx mouse model of DMD which lack dystrophin. Significant differences in action potential firing frequency, regularity, and shape were found between cerebellar regions. Purkinje neurons from mdx mouse cerebellum exhibited membrane hyperpolarization and irregular action potential firing, regardless of region. Spontaneous action potential firing frequency was reduced in Purkinje neurons from lateral cerebellum in mdx mice relative to controls, demonstrating that a loss of dystrophin causes a potent dysregulation of Purkinje neuron function in the region associated with cognition. This research extends our understanding of cerebellar pathology in DMD and its potential relevance to cognitive deficits in the disorder. Moreover, this research further supports the role of the cerebellum as a structure important for cognition and contributes to our understanding of dystrophin’s role in the brain.
26

INSULIN ACTIONS ON HIPPOCAMPAL NEURONS

Maimaiti, Shaniya 01 January 2017 (has links)
Aging is the main risk factor for cognitive decline. The hippocampus, a brain region critical for learning and memory formation, is especially vulnerable to normal and pathological age-related cognitive decline. Dysregulation of both insulin and intracellular Ca2+ signaling appear to coexist and their compromised actions may synergistically contribute to neuronal dysfunction with aging. This dissertation focused on the interaction between insulin, Ca2+ dysregulation, and cognition in hippocampal neurons by examining the contributions of insulin to Ca2+ signaling events that influence memory formation. I tested the hypothesis that insulin would increase cognition in aged animals by altering Ca2+-dependent physiological mechanisms involved in learning. The possible effects of insulin on learning and memory in young and aged rats were studied. In addition, the effects of insulin on the Ca2+-dependent afterhyperpolarization in CA1 pyramidal hippocampal neurons from young and aged animals were compared. Further, primary hippocampal cultures were used to examine the possible effects of insulin on voltage-gated Ca2+ channel activity and Ca2+-induced Ca2+-release; mechanisms known to influence the AHP. We found that intranasal insulin improved memory in aged F344 rats. Young and aged F344 rats were treated with Humalog®, a short-acting insulin analog, or Levemir®, a long-acting insulin analog. The aged rats performed similar to young rats in the Morris Water Maze, a hippocampal dependent spatial learning and memory task. Electrophysiological recordings from CA1 hippocampal neurons revealed that insulin reduced the age-related increase in the Ca2+-dependent afterhyperpolarization, a prominent biomarker of brain aging that is associated with cognitive decline. Patch clamping recording from hippocampal cultured neurons showed that insulin reduced Ca2+ channel currents. Intracellular Ca2+ levels were also monitored using Fura-2 in response to cellular depolarization. Results indicated that a reduction in Ca2+-induced Ca2+-release from intracellular stores occurred in the presence of insulin. These results suggest that increasing brain insulin levels in aged rats may have improved memory by reducing the AHP and intracellular Ca2+concentrations. This study indicates a possible mechanism responsible for the beneficial effects of intranasal insulin on cognitive function absorbed in selective Alzheimer’s patients. Thus, insulin therapy may reduce or prevent age-related compromises to Ca2+ regulatory pathways typically associated with cognitive decline.
27

Engineering Whole Cell-Based Biosensors for Heavy Metal Detection Using Metalloregulatory Transcriptional Repressors of the SmtB/ArsR Family

Draeger, Alison 05 1900 (has links)
This study focuses on engineering whole cell-based biosensors for heavy metal detection. Through the exploitation of metalloregulatory proteins, fabrication of metal ion-responsive biosensors is achieved. Metalloregulatory proteins of the SmtB/ArsR family including arsenite-responsive ArsR, cadmium-responsive CadC, zinc-responsive CzrA, and nickel-responsive NmtR were evaluated as biosensor sensing modules. Characterization of these four metal sensing modules was accomplished through quantification of a reporter green fluorescence protein (gfp) gene. As such, biosensors pCTYC-r34ArsR-pL(ArsOvN)GFP and pCTYC-r34CadC-pL(CadOv1)GFP displayed excellent gfp expression and sensitivity to As(III) and Cd (II), respectively. These two biosensors were consequently selected and successfully implemented in soil bacterium Pseudomonas putida. Lastly, a proof of concept arsenite-responsive genetic toggle switch is proposed utilizing PurRcelR467 (PC47), a cellobiose-responsive gene, and an LAA degradation tag. Overall, this study expands the bank of metalloregulatory bioparts for heavy metal sensing in the aim of constructing an optimized water monitoring system.
28

Phosphoinositide-3-kinase/akt - Dependent Signaling is Required for Maintenance of [Ca<sup>2+</sup>]<sub>I,</sub>I<sub>Ca</sub>, and Ca<sup>2+</sup> Transients in HL-1 Cardiomyocytes

Graves, Bridget M., Simerly, Thomas, Li, Chuanfu, Williams, David L., Wondergem, Robert 22 June 2012 (has links)
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca 2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (120 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca 2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 28 nM); ? (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca 2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca 2+ transients. Triciribine (120 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca 2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca 2+]i required for excitation-contraction coupling in cardiomyoctyes.
29

Determining Optimal Swab Type and Elution Buffer to Obtain WholeCells for Future Deconvolution of Complex Cell Mixtures

Jollie, Melissa Lynn 24 May 2021 (has links)
No description available.
30

Mechanisms Underlying Subthreshold and Suprathreshold Responses in Dorsal Cochlear Nucleus Cartwheel Cells

Tong, Mingjie January 2005 (has links)
No description available.

Page generated in 0.0404 seconds