• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 295
  • 49
  • 36
  • 20
  • 19
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 576
  • 342
  • 111
  • 109
  • 104
  • 97
  • 91
  • 84
  • 73
  • 73
  • 72
  • 69
  • 66
  • 50
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

WIDEBAND, HIGH DATA RATE KU-BAND MODULATOR DRIVER AMPLIFIER FOR HIGH RELIABILITY SPACEBORNE APPLICATIONS

Gassmann, Jeremy D. 18 October 2010 (has links)
No description available.
162

Digital Wideband Spectral Sensing Receiver

Burich, Lawrence D. 27 August 2012 (has links)
No description available.
163

High Frequency Resolution Adaptive Thresholding Wideband Receiver System

Liu, Feiran January 2015 (has links)
No description available.
164

Estimation of a wideband fading HF channel using modified adaptive filtering and center clipping techniques

Matherne, Marcus McLenn January 1994 (has links)
No description available.
165

Joint scale-lag diversity in mobile wideband communications

Margetts, Adam R. 24 August 2005 (has links)
No description available.
166

Ultra-Wideband Antennas for Medical Imaging and Communication Applications

Jafari, Hamed Mazhab 08 1900 (has links)
<p> The allocation of 7.5 GHz of bandwidth by the Federal Communication Commission (FCC) for ultra-wideband (UWB) applications has provided an exciting and a challenging opportunity to design short range wireless communication and microwave imaging systems. To fully realize the potential of the UWB, communication and microwave imaging systems are required to operate over the entire UWB frequency band. The combination of the wide bandwidth requirement and the target application of the UWB systems have led to a surge of interest in designing of novel integrated circuits and antennas for the UWB applications. In any wireless communication and microwave imaging system, the antenna has a fundamental effect on the overall performance of the system, and as a result, it has attracted considerable research interest.</p> <p> This thesis focuses on the design of UWB antennas that are suitable for UWB cancer detection and wireless communication systems. Two planar antennas, one a printed monopole antenna, and the other, a printed slot antenna fed with a coplanar waveguide, are presented in this work. First, the antennas have been designed to operate in air, making them suitable for the UWB wireless short range communication applications. Measurement and simulation results indicate that both antennas achieve input impedance matching in a bandwidth of more than 7.5 GHz. The effect on the input matching of the antennas due to the variation in their geometrical parameters has been studied and both antennas have been fully characterized in air. Next, the two antennas have been redesigned to operate in a coupling medium for medical imaging applications. Both antennas achieve return loss of less than -10 dB over the entire UWB spectrum. Also, the antennas have been fully characterized while operating in the coupling medium and in proximity to a human body model. Finally, a two-element antenna array, based on the printed monopole antenna and the printed slot antenna, in co- and cross-polarized array formation, has been designed. The tumor detection capabilities of all antenna arrays for different scenarios have been studied through electromagnetic simulation and measurements.</p> / Thesis / Master of Applied Science (MASc)
167

Ultra-Wideband, Low Power, Silicon Germanium Distributed Amplifiers

El-Badry, Ehab 09 1900 (has links)
<p> As modern digital communications evolve, the requirements imposed on the systems than are required to transmit/receive the signals involved become more stringent. Amplifiers are required to provide gain from low frequencies, sometimes down to DC, up to high frequencies in the order of few to tens of gigahertz. Not only is the gainbandwidth product to be enhanced, but also the amplifier should introduce minimal distortion to the signal and consume as low power as possible. </p> <p> Distributed amplification is a multi-stage broadband circuit technique that may provide such a function. In distributed amplifiers, inter-stage transmission lines provide the capability to reach higher operational frequencies by absorbing the parasitic capacitances of the transistors used. Unlike other broadband topologies that trade-off gain and bandwidth, distributed amplifiers do not, but rather, the trade-off is between gain and delay. As gain stages are added, the gain increases as the bandwidth remains the same but the signal delay is increased. </p> <p> This work considers the silicon germanium (SiGe) heterojunction bipolar transistor (HBT) implementation of distributed amplifiers. SiGe HBTs incorporate a thin SiGe base with Ge profiling to achieve high cut-off frequencies. SiGe BiCMOS processes are silicon based and hence have the major advantage of integrability to the low cost CMOS process unlike ill-V compound semiconductors. Hence, SiGe is a promising technology capable of bridging the performance gap between silicon and m-v semiconductors. </p> <p> The proposed amplifier achieves an approximately flat gain of 6.5 dB and a noise figure of 5.8-9 dB throughout the -3 dB passband of 10.5 GHz. The power consumed is 12.2 mW, significantly lower than previously published results by up to an order of magnitude is some cases. The group delay of the amplifier was found to be approximately constant in the passband at -60 ps. </p> <p> For the first time, temperature measurements are preformed on SiGe HBT DAs. Analysis show that the gain falls drastically with temperature increase due to deterioration in input matching caused by the significant change in the transistors input impedance with temperature. Similarly the NF, increases with temperature due to the decrease in gain. Moreover, noise analysis of SiGe HBT DAs is investigated, producing simulations predicting the NF of the proposed amplifier giving insight as to how noise may be reduced in future designs. </p> / Thesis / Master of Applied Science (MASc)
168

Compact Orthogonal Wideband Printed MIMO Antenna for WiFi/WLAN/LTE Applications

Marzudi, W.N.N.W., Abidin, Z.Z., Dahlan, S.H., Yue, Ma, Abd-Alhameed, Raed, Child, Mark B. 04 March 2015 (has links)
Yes / This study presents a wideband multiple-input-multiple-output (MIMO) antenna for Wifi/WLAN/LTE applications. The antenna consists of two triangular patches as the radiating elements placed orthogonally to each other. Two T-slots and a rectangular slot were etched on the ground plane to improve return loss and isolation. The total dimension of the proposed antenna is 30 x 30 mm2. The antenna yields impedance bandwidth of 101.7% between 2.28 GHz up to 7 GHz with a reflection coefficient of < -10 dB, and mutual coupling of < -14 dB. The results including S-Parameters, MIMO characteristics with analysis of envelope correlation coefficient (ECC), total active reflection coefficient (TARC), capacity loss, channel capacity, VSWR, antenna gain and radiation patterns are evaluated. These characteristics indicate that the proposed antenna is suitable for MIMO wireless applications.
169

Aperture-Coupled Asymmetric Dielectric Resonators Antenna for Wideband Applications

Majeed, Asmaa H., Abdullah, Abdulkareem S., Elmegri, Fauzi, Sayidmarie, Khalil H., Abd-Alhameed, Raed, Noras, James M. 05 1900 (has links)
Yes / A compact dielectric resonator antenna (DRA) for wideband applications is proposed. Two cylindrical dielectric resonators which are asymmetrically located with respect to the center of a rectangular coupling aperture are fed through this aperture. By optimizing the design parameters, an impedance bandwidth of about 29%, covering the frequency range from 9.62 GHz to 12.9 GHz, and a gain of 8 dBi are obtained. Design details of the proposed antenna and the results of both simulation and experiment are presented and discussed.
170

Compact size uni-planer small metamaterial-inspired antenna for UWB applications

Jan, Naeem A., Elmegri, Fauzi, Bin-Melha, Mohammed S., Abd-Alhameed, Raed, Lashab, Mohamed, See, Chan H. January 2015 (has links)
No / In this paper, low profile planar Metamaterial-Inspired coplanar fed waveguide antenna is presented for WLAN and Ultra-Wideband applications. The antenna is based on a simple strip loaded to a rectangular patch and zigzag E-shape metamaterial-inspired unit cell. The idea behind the proposed antenna is to enable miniaturization effect. The proposed antenna can provide dual band operation, the first one is a Wi-Fi band at 2.45 GHz having impedance bandwidth of 150MHz, the second one is an ultra wide band extended from 4.2 GHz to 6.5 GHz. Two antennas are designed and fabricated with and without metamaterial-inspired loading. The simulated and measured results regarding Return loss (S11), Gain and Radiation pattern are discussed.

Page generated in 0.0317 seconds