• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of wind and topography to coastal current variations at daily to seasonal cycles

Chang, Chun-hsiang 10 September 2007 (has links)
The coastal current is influenced by coastline topography, its advection direction is parallel with coastline because different periodic of wind field function makes the ocean dynamics is more complicated in coastal. In order to treat the effects of topography and wind to coastal current variations, we make long time observation data about ocean and meteorology and analyze them near the harbor of HSinDa in Kaohsiung . This research use bottom Acoustic Doppler Current Profiler (bm-ADCP ) , Temperature and Pressure Logger(TP ) , anemometer and wind direction vane to observe flow field ,tidal and wind field in the locality. The collected data are analyzed through a variety of time series analysis technique , such as strain wave, harmonic analysis , Fast Fourior Transform (FFT) analysis that uses different frequency wave bands make an relevant analysis materials and then. The results show that (1) when sea-land breeze was weak, the main axial angle of diurnal tide ellipticity of the current was parallel with the coastline direction. Because the friction of sea flow affected; the ellipticity became smaller and assumed the reciprocal motion¡Fwhen sea-land breeze was stronger, diurnal tide ellipticity of the current was bigger, and main axial angle from coastline parallel changes to follow the sea-land breeze heading. It means sea-land breeze can affect the surface flow motion. (2)When a front passed in winter, it produces the current faced to the southeast along the coast. In the energy spectrum effect, the wind field and the flow field have the same peak of the period, the period was 4 days, 5.5 days, and 8 days, it means that the correlation of the flow field and wind field is good; this result is closed with the observes in land station. (3)In the period of southwest monsoon, there has coastal current toward northwest in the southwest of Taiwan straits. In the other period, the direction of current always moved toward southeast. The result of the low-frequency filter, the flow is smaller than tidal current and wind-drift current. It means that this sea area is affected by tide current and wind-drift current.
2

Assessment of Analytical Procedures for Designing Metal Buildings for Wind Drift Serviceability

Bajwa, Maninder Singh 17 September 2010 (has links)
While designing metal buildings for wind drift, for simplicity of analysis and design, connection at base of column is considered as pinned which provides no rotational restraint. The actual behavior of the connection however, is partially rigid, that provides some rotational stiffness even in case of single row of bolts. Moreover, using a two-dimensional (planar) structural model for analysis ignores any load distribution provided by roof and wall sheeting. Simulation of true behavior of base connection and diaphragm stiffness can substantially reduce drift caused due to lateral forces thereby lessening the conservatism in traditional design practices. This thesis provides results obtained from full-scale experimental testing and analytical study for a metal building. A full scale load test was conducted to quantify the lateral stiffness of an existing metal building. A static lateral load, consistent in magnitude with the building's design wind pressure, was applied to the knee of a primary frame, and the resulting lateral displacements and column-base rotations for all primary frames were measured. The test procedure was repeated at several locations. The experimentally obtained results were then validated using two-dimensional and three-dimensional analytical models. The three-dimensional models explicitly simulated the primary and secondary framing, roof and wall diaphragms, and column-base stiffness. A couple of approaches have been proposed to model column-base plate connection varying in complexity and accuracy. Once validated, the FE model is utilized to quantify the relative stiffness contributions of the metal building system components to lateral drift. While performing analysis some other parameters were also studied. These consisted of effect of base plate thickness and length of anchor bolts on column-base rigidity. Also, effect of including shear deformations and considering the haunch (column-rafter junction) as rigid were studied. Another small but important part of the paper is comparison of wind pressures obtained using different procedure of ASCE 7-05 with database assisted design pressures. Once these parameters are quantified practical engineering guidelines are developed to incorporate the influence of secondary framing, roof diaphragms, wall cladding, and column-base stiffness and wind loads in metal building design. / Master of Science
3

Improved quantitative estimation of rainfall by radar

Islam, Md Rashedul 06 January 2006 (has links)
Although higher correlation between gauge and radar at hourly or daily accumulations are reported, it is rarely observed at higher time resolution (e.g. 10 -minute). This study investigates six major rainfall events in year 2000 in the greater Winnipeg area with durations varying from four to nine hours. The correlation between gauge and radar measurements of precipitation is found to be only 0.3 at 10-minute resolution and 0.55 at hourly resolution using Marshall-Palmer’s Z-R relationship (Z=200R1.6). The rainfalls are classified into convective and stratiform regions using Steiner et al. (1995)’s algorithm and two different Z-R relationships are tested to minimize the error associated with the variability of drop-size-distribution, however no improvement is observed. The performance of the artificial neural network is explored as a reflectivity-rainfall mapping function. Three different types of neural networks are explored: the back propagation network, the radial basis function network, and the generalized regression neural network. It is observed that the neural network’s performance is better than the Z-R relationship to estimate the rainfall events which was used for training and validation (correlation 0.67). When this network is tested on a new rainfall its performance is found quite similar to that obtained from the Z-R relationship (correlation 0.33). Based on this observation neural network may be recommended as a post-processing tool but may not be very useful for operational purposes - at least as used in this study. Variability in weather and precipitation scenarios affects the radar measurements which apparently makes it impossible for the neural network or the Z-R relationship to show consistent performance at every rainfall event. To account for variability in weather and rainfall scenarios conventional correction schemes for attenuation and hail contamination are applied and a trajectory model is developed to account for rainfall advection due to wind drift. The trajectory model uses velocity obtained from the single-doppler observation. A space-time interpolation technique is applied to generate reflectivity maps at one-minute resolution based on the direction obtained from the correlation based tracking algorithm. The trajectory model uses the generated reflectivity maps having one-minute resolution which help to account for the travel time by the rainfall mass to reach to the ground. It was found that the attenuation correction algorithm adversely increases the reflectivity. This study assumes that the higher reflectivity caused by hail contaminated regions is one reason for the overestimation in the attenuation correction process. It was observed that the hail capping method applied prior to the attenuation correction algorithm helps to improve the situation. A statistical expression to account for radome attenuation is also developed. It is observed that the correlation between the gauge and the radar measurement is 0.81 after applying the various algorithms. Although Marshall-Palmer’s relationship is recommended for stratiform precipitation only, this study found it suitable for both convective and stratiform precipitation when attenuation is properly taken into account. The precipitation processing model developed in this study generates more accurate rainfall estimates at the surface from radar observations and may be a better choice for rainfall-runoff modellers. / February 2006
4

Molecular systematics and phylogeography of the dusky dolphin (Lagenorhynchus obscurus) derived from nuclear and mitochondrial loci

Harlin, April Dawn 12 April 2006 (has links)
This study presents evidence from mitochondrial and nuclear loci that there is genetic divergence among and within geographic populations of Lagenorhynchus obscurus. The effect of seasonal variation on the genetic structure within New Zealand was examined with mitochondrial DNA control region sequences from 4 localities. Analysis of nested haplotype clades indicated genetic fragmentation and at least 1 historical population expansion within New Zealand. AMOVA and Fst values from nuclear and mitochondrial DNA sequences suggested significant divergence between New Zealand, South Africa, Argentina, and Peru. Dispersal via the west-wind drift was not supported by patterns of population structure among regions. Alternatively, these data support reciprocal exchange among all four regions with 100% posterior probability for a root of origin in the Indian/Atlantic Oceans. The degree of divergence between Peru and other regions indicates the isolation of Peruvian stock is temporally correlated with the constriction of Drake’s passage in the Plio-Pleistocene. There is evidence that the Plio-Pliestocene paleoceanography of the Indian and Southern Atlantic Oceans influenced phylogeography with shifts of temperate sea surface temperatures northward ~5º of latitude, disrupting the dispersal corridor between New Zealand and Atlantic populations. A preference for temperate waters along continental shelves is proposed as an explanation for lack of contemporary genetic exchange among regions. This study supports the polyphyly of the genus Lagenorhynchus. North Atlantic species form a monophyletic Lagenorhynchus. In the Southern Hemisphere, L. australis/L. cruciger and L. obliquidens/L. obscurus do not form a monophyletic group. I discuss the taxonomic implications and propose taxonomic revision of the genus based on these results. Measures of character interaction indicate that combined evidence from nuclear and mitochondrial genes provide better phylogenetic resolution among delphinid lineages than any data partition independently, despite some indications of conflict among mitochondrial and nuclear data.
5

Improved quantitative estimation of rainfall by radar

Islam, Md Rashedul 06 January 2006 (has links)
Although higher correlation between gauge and radar at hourly or daily accumulations are reported, it is rarely observed at higher time resolution (e.g. 10 -minute). This study investigates six major rainfall events in year 2000 in the greater Winnipeg area with durations varying from four to nine hours. The correlation between gauge and radar measurements of precipitation is found to be only 0.3 at 10-minute resolution and 0.55 at hourly resolution using Marshall-Palmer’s Z-R relationship (Z=200R1.6). The rainfalls are classified into convective and stratiform regions using Steiner et al. (1995)’s algorithm and two different Z-R relationships are tested to minimize the error associated with the variability of drop-size-distribution, however no improvement is observed. The performance of the artificial neural network is explored as a reflectivity-rainfall mapping function. Three different types of neural networks are explored: the back propagation network, the radial basis function network, and the generalized regression neural network. It is observed that the neural network’s performance is better than the Z-R relationship to estimate the rainfall events which was used for training and validation (correlation 0.67). When this network is tested on a new rainfall its performance is found quite similar to that obtained from the Z-R relationship (correlation 0.33). Based on this observation neural network may be recommended as a post-processing tool but may not be very useful for operational purposes - at least as used in this study. Variability in weather and precipitation scenarios affects the radar measurements which apparently makes it impossible for the neural network or the Z-R relationship to show consistent performance at every rainfall event. To account for variability in weather and rainfall scenarios conventional correction schemes for attenuation and hail contamination are applied and a trajectory model is developed to account for rainfall advection due to wind drift. The trajectory model uses velocity obtained from the single-doppler observation. A space-time interpolation technique is applied to generate reflectivity maps at one-minute resolution based on the direction obtained from the correlation based tracking algorithm. The trajectory model uses the generated reflectivity maps having one-minute resolution which help to account for the travel time by the rainfall mass to reach to the ground. It was found that the attenuation correction algorithm adversely increases the reflectivity. This study assumes that the higher reflectivity caused by hail contaminated regions is one reason for the overestimation in the attenuation correction process. It was observed that the hail capping method applied prior to the attenuation correction algorithm helps to improve the situation. A statistical expression to account for radome attenuation is also developed. It is observed that the correlation between the gauge and the radar measurement is 0.81 after applying the various algorithms. Although Marshall-Palmer’s relationship is recommended for stratiform precipitation only, this study found it suitable for both convective and stratiform precipitation when attenuation is properly taken into account. The precipitation processing model developed in this study generates more accurate rainfall estimates at the surface from radar observations and may be a better choice for rainfall-runoff modellers.
6

Improved quantitative estimation of rainfall by radar

Islam, Md Rashedul 06 January 2006 (has links)
Although higher correlation between gauge and radar at hourly or daily accumulations are reported, it is rarely observed at higher time resolution (e.g. 10 -minute). This study investigates six major rainfall events in year 2000 in the greater Winnipeg area with durations varying from four to nine hours. The correlation between gauge and radar measurements of precipitation is found to be only 0.3 at 10-minute resolution and 0.55 at hourly resolution using Marshall-Palmer’s Z-R relationship (Z=200R1.6). The rainfalls are classified into convective and stratiform regions using Steiner et al. (1995)’s algorithm and two different Z-R relationships are tested to minimize the error associated with the variability of drop-size-distribution, however no improvement is observed. The performance of the artificial neural network is explored as a reflectivity-rainfall mapping function. Three different types of neural networks are explored: the back propagation network, the radial basis function network, and the generalized regression neural network. It is observed that the neural network’s performance is better than the Z-R relationship to estimate the rainfall events which was used for training and validation (correlation 0.67). When this network is tested on a new rainfall its performance is found quite similar to that obtained from the Z-R relationship (correlation 0.33). Based on this observation neural network may be recommended as a post-processing tool but may not be very useful for operational purposes - at least as used in this study. Variability in weather and precipitation scenarios affects the radar measurements which apparently makes it impossible for the neural network or the Z-R relationship to show consistent performance at every rainfall event. To account for variability in weather and rainfall scenarios conventional correction schemes for attenuation and hail contamination are applied and a trajectory model is developed to account for rainfall advection due to wind drift. The trajectory model uses velocity obtained from the single-doppler observation. A space-time interpolation technique is applied to generate reflectivity maps at one-minute resolution based on the direction obtained from the correlation based tracking algorithm. The trajectory model uses the generated reflectivity maps having one-minute resolution which help to account for the travel time by the rainfall mass to reach to the ground. It was found that the attenuation correction algorithm adversely increases the reflectivity. This study assumes that the higher reflectivity caused by hail contaminated regions is one reason for the overestimation in the attenuation correction process. It was observed that the hail capping method applied prior to the attenuation correction algorithm helps to improve the situation. A statistical expression to account for radome attenuation is also developed. It is observed that the correlation between the gauge and the radar measurement is 0.81 after applying the various algorithms. Although Marshall-Palmer’s relationship is recommended for stratiform precipitation only, this study found it suitable for both convective and stratiform precipitation when attenuation is properly taken into account. The precipitation processing model developed in this study generates more accurate rainfall estimates at the surface from radar observations and may be a better choice for rainfall-runoff modellers.
7

Rational Procedure for Damage Based Serviceability Design of Steel Buildings Under Wind Loads and a Simple Linear Response History Procedure for Building Codes

Aswegan, Kevin Paul 30 August 2013 (has links)
This thesis is divided into two topics: the development of a procedure for wind serviceability design of steel buildings and the development of a simple linear response history analysis for building codes. In the United States the building codes are generally silent on the issue of serviceability. This has led to a wide variation in design practices related to service level wind loads. Chapter 2 of this thesis contains a literature review which discusses pertinent aspects of wind drift serviceability, including selecting the mean recurrence interval (MRI), mathematical modeling of the structure, and establishment of rational deformation limits. Chapter 3 contains a journal article submitted to Engineering Journal which describes the recommended procedure for damage based wind serviceability design of steel structures. The procedure uses a broad range of MRIs, bases damage measurement on shear strains, includes all sources of deformation in the model, and bases deformation limits on fragility curves. Chapter 4 of this thesis contains a literature review which examines issues related to performing linear response history analysis. Chapter 5 contains a conference paper submitted to the Tenth U.S. National Conference on Earthquake Engineering which serves as a position paper promoting the inclusion of a linear response history analysis procedure in future editions of the NEHRP Recommended Seismic Provisions and ASCE 7. The procedure address the following issues: selection and scaling of ground motions, the use of spectral matched ground motions, design for dependent actions, and the scaling of responses with the response modification coefficient (R) and the deflection amplification factor (Cd). / Master of Science
8

Morning Flight Behavior of Nocturnally Migrating Birds in Relation to a Geographic Obstacle

Tuck, Paul T. 14 November 2017 (has links)
No description available.
9

Movement ecology of long-distance migrants: insights from the Eleonora's falcon and other raptors / Ecología del movimiento de migradores de larga distancia: ejemplos con el halcón de Eleonora y otras rapaces

Mellone, Ugo 28 June 2013 (has links)
No description available.

Page generated in 0.0674 seconds