• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 15
  • 15
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Simulação numérica na engenharia do vento incluindo efeitos de interação fluido-estrutura / Simulação numérica na engenharia do vento incluindo efeitos de interação fluido-estrutura

Braun, Alexandre Luis January 2007 (has links)
O objetivo deste trabalho é estudar e desenvolver procedimentos numéricos adequados para a análise de problemas da Engenharia do Vento Computacional (EVC). O escoamento é analisado a partir das equações de Navier-Stokes para um fluido Newtoniano e de uma equação de conservação de massa considerando a hipótese de pseudo-compressibilidade, ambas em um processo isotérmico. Na presença de escoamentos turbulentos emprega-se a Simulação de Grandes Escalas (“LES”) com os modelos clássico e dinâmico de Smagorinsky para as escalas inferiores à resolução da malha. Dois modelos numéricos de Taylor-Galerkin para a análise do escoamento são estudados: o esquema explícito de dois passos e o esquema explícito-iterativo. O Método dos Elementos Finitos (MEF) é empregado para a discretização do domínio espacial utilizando o elemento hexaédrico trilinear isoparamétrico com integração reduzida das matrizes em nível de elemento. Em problemas envolvendo efeitos de interação fluido-estrutura emprega-se um esquema de acoplamento particionado com características superiores de conservação, permitindo, inclusive, o uso de subciclos entre as análises do fluido e da estrutura e de malhas não compatíveis na interface. A estrutura é considerada como um corpo deformável constituído de um material elástico linear com a presença de nãolinearidade geométrica. O MEF é também usado para a discretização da estrutura, empregando-se para tanto o elemento hexaédrico trilinear isoparamétrico com integração reduzida e controle de modos espúrios. A equação de equilíbrio dinâmico é integrada no tempo utilizando o método implícito de Newmark no contexto do método de estabilização α- Generalizado. Na presença de estruturas deformáveis, o escoamento é descrito através de uma formulação arbitrária Lagrangeana-Euleriana (ALE). Ao final, comparações com exemplos numéricos e experimentais são apresentadas para demonstrar a viabilidade dos algoritmos desenvolvidos, seguindo-se com as conclusões do trabalho e as sugestões para trabalhos futuros. / Analysis and development of numerical tools to simulate Computational Wind Engineering (CWE) problems is the main goal of the present work. The isothermal flow is analyzed using the Navier-Stokes equations for viscous fluids and a mass conservation equation obtained according to the pseudo-compressibility assumption. Turbulent flows are simulated employing Large Eddy Simulation (LES) with the classical and dynamic Smagorinsky’s models for subgrid scales. Two Taylor-Galerkin models for the flow analysis are investigated: the explicit two-step scheme and the explicit-iterative scheme. The Finite Element Method (MEF) is employed for spatial discretizations using the eight-node hexahedrical isoparametric element with one-point quadrature. Fluid-structure interaction problems are analyzed with a coupling model based on a conservative partitioned scheme. The Finite Element Method (MEF) is employed for spatial discretizations using the eight-node hexahedrical isoparametric element with one-point quadrature. Fluid-structure interaction problems are analyzed with a coupling model based on a conservative partitioned scheme. Subcycling and nonmatching meshes for independent discretizations of the fluid and structure domains are also available. The structure is considered as a deformable body constituted by a linear elastic material with geometrically nonlinear effects. The FEM is used for the spatial discretization of the structure as well. Eight-node hexahedrical isoparametric elements with one-point quadrature and hourglass control are adopted in this process. The implicit Newmark algorithm within the framework of the α-Generalized method is employed for the numerical integration of the dynamic equilibrium equation. An arbitrary Lagrangean-Eulerian (ALE) description is adopted for the kinematic description of the flow when deformable structures are analyzed. Numerical and experimental examples are simulated in order to demonstrate the accuracy of the developed algorithms. Concluding remarks and suggestions for future works are pointed out in the last chapter of the present work.
32

Simulação numérica na engenharia do vento incluindo efeitos de interação fluido-estrutura / Simulação numérica na engenharia do vento incluindo efeitos de interação fluido-estrutura

Braun, Alexandre Luis January 2007 (has links)
O objetivo deste trabalho é estudar e desenvolver procedimentos numéricos adequados para a análise de problemas da Engenharia do Vento Computacional (EVC). O escoamento é analisado a partir das equações de Navier-Stokes para um fluido Newtoniano e de uma equação de conservação de massa considerando a hipótese de pseudo-compressibilidade, ambas em um processo isotérmico. Na presença de escoamentos turbulentos emprega-se a Simulação de Grandes Escalas (“LES”) com os modelos clássico e dinâmico de Smagorinsky para as escalas inferiores à resolução da malha. Dois modelos numéricos de Taylor-Galerkin para a análise do escoamento são estudados: o esquema explícito de dois passos e o esquema explícito-iterativo. O Método dos Elementos Finitos (MEF) é empregado para a discretização do domínio espacial utilizando o elemento hexaédrico trilinear isoparamétrico com integração reduzida das matrizes em nível de elemento. Em problemas envolvendo efeitos de interação fluido-estrutura emprega-se um esquema de acoplamento particionado com características superiores de conservação, permitindo, inclusive, o uso de subciclos entre as análises do fluido e da estrutura e de malhas não compatíveis na interface. A estrutura é considerada como um corpo deformável constituído de um material elástico linear com a presença de nãolinearidade geométrica. O MEF é também usado para a discretização da estrutura, empregando-se para tanto o elemento hexaédrico trilinear isoparamétrico com integração reduzida e controle de modos espúrios. A equação de equilíbrio dinâmico é integrada no tempo utilizando o método implícito de Newmark no contexto do método de estabilização α- Generalizado. Na presença de estruturas deformáveis, o escoamento é descrito através de uma formulação arbitrária Lagrangeana-Euleriana (ALE). Ao final, comparações com exemplos numéricos e experimentais são apresentadas para demonstrar a viabilidade dos algoritmos desenvolvidos, seguindo-se com as conclusões do trabalho e as sugestões para trabalhos futuros. / Analysis and development of numerical tools to simulate Computational Wind Engineering (CWE) problems is the main goal of the present work. The isothermal flow is analyzed using the Navier-Stokes equations for viscous fluids and a mass conservation equation obtained according to the pseudo-compressibility assumption. Turbulent flows are simulated employing Large Eddy Simulation (LES) with the classical and dynamic Smagorinsky’s models for subgrid scales. Two Taylor-Galerkin models for the flow analysis are investigated: the explicit two-step scheme and the explicit-iterative scheme. The Finite Element Method (MEF) is employed for spatial discretizations using the eight-node hexahedrical isoparametric element with one-point quadrature. Fluid-structure interaction problems are analyzed with a coupling model based on a conservative partitioned scheme. The Finite Element Method (MEF) is employed for spatial discretizations using the eight-node hexahedrical isoparametric element with one-point quadrature. Fluid-structure interaction problems are analyzed with a coupling model based on a conservative partitioned scheme. Subcycling and nonmatching meshes for independent discretizations of the fluid and structure domains are also available. The structure is considered as a deformable body constituted by a linear elastic material with geometrically nonlinear effects. The FEM is used for the spatial discretization of the structure as well. Eight-node hexahedrical isoparametric elements with one-point quadrature and hourglass control are adopted in this process. The implicit Newmark algorithm within the framework of the α-Generalized method is employed for the numerical integration of the dynamic equilibrium equation. An arbitrary Lagrangean-Eulerian (ALE) description is adopted for the kinematic description of the flow when deformable structures are analyzed. Numerical and experimental examples are simulated in order to demonstrate the accuracy of the developed algorithms. Concluding remarks and suggestions for future works are pointed out in the last chapter of the present work.
33

Simulação numérica da dispersão de poluentes em zonas urbanas considerando efeitos térmicos

Madalozzo, Deborah Marcant Silva January 2012 (has links)
O objetivo deste trabalho é estudar, dentro da Engenharia do Vento Computacional (EVC), a dispersão de poluentes em zonas urbanas, empregando-se um modelo numérico baseado em técnicas da Dinâmica dos Fluidos Computacional para escoamentos incompressíveis, não isotérmicos e com transporte de massa. Um esquema explícito de dois passos é usado para a discretização temporal das equações governantes, considerando expansões em séries de Taylor de segunda ordem para as derivadas no tempo. O processo de discretização espacial é realizado através da aplicação do Método dos Elementos Finitos (MEF), onde hexaedros de oito nós com um ponto de integração são utilizados. A turbulência é tratada numericamente através da Simulação de Grandes Escalas (LES) e os modelos clássico e dinâmico de Smagorinsky são empregados na modelagem das escalas inferiores à resolução da malha. Efeitos de temperatura sobre o escoamento são considerados na forma de forças de flutuação presentes na equação de balanço de momentum, as quais são calculadas a partir da aproximação de Boussinesq. Técnicas de paralelização em memória compartilhada (OpenMP) são também usadas a fim de melhorar a eficiência computacional do presente modelo para problemas com grande número de elementos. Exemplos clássicos de Dinâmica de Fluidos e Fenômenos de Transporte são inicialmente analisados para teste das ferramentas numéricas implementadas. Problemas de dispersão de poluentes com e sem a inclusão dos efeitos de temperatura são abordados para configurações geométricas bi e tridimensionais de street canyons, representando a unidade geométrica básica encontrada em centros urbanos de grandes cidades. / The main goal of the present work is to study the pollutant dispersion in urban areas using a numerical model based on techniques developed by Computational Fluid Dynamics, where applications of Computational Wind Engineering (CWE) are analyzed considering incompressible flows with heat and mass transport. A two-step explicit scheme is adopted for the time discretization of the governing equations considering second order Taylor series expansions of the time derivative terms. Spatial discretization is performed by applying the Finite Element Method (FEM), where eight-node hexahedral elements with one-point quadrature are utilized. Turbulence is numerically analyzed by using Large Eddy Simulation (LES) with the classical and dynamic Smagorinsky’s models for subgrid scale modeling. Thermal effects on the flow field are taken into account through buoyancy forces acting on the momentum balance equation, which are calculated considering the Boussinesq approximation. Shared memory parallelization techniques (OpenMP) are also employed in order to improve computational efficiency for problems with large number of elements. Classic examples of Fluid Dynamics and Transport Phenomena are first analyzed to verify the numerical tools implemented. Problems involving pollutant dispersion with and without the inclusion of thermal effects are investigated for two and three-dimensional geometric configurations of street canyons, which represent the basic geometric unit observed in urban centers of large cities.
34

Projeto baseado em desempenho de torres metálicas sujeitas à ação do vento / Performance-based design of steel towers subject to wind action

Tessari, Rodolfo Krul 25 February 2016 (has links)
A Engenharia de Ventos Baseada em Desempenho (Performance-based Wind Engineering - PBWE) é uma filosofia de projeto que preconiza identificar e quantificar as incertezas envolvidas no projeto estrutural a fim de assegurar níveis previsíveis de desempenho às edificações, não mais gerenciando o risco através da clássica abordagem determinística. Contudo, devido à recente proposição da metodologia, ainda há poucos estudos relacionados à PBWE, cada qual apresentando diferentes limitações. Assim, o presente trabalho propõe uma adaptação da metodologia da Engenharia de Ventos Baseada em Desempenho à análise probabilística do comportamento de torres metálicas, avaliando diferentes modelos de cálculo para estimativa das forças do vento neste tipo de estrutura. Para tanto, investigou-se as incertezas envolvidas na caracterização do campo de ventos e da resistência estrutural e foram analisados quatro métodos distintos para a estimativa das forças de vento em torres metálicas: dois procedimentos de cálculo correspondentes à norma brasileira de ventos ABNT NBR 6123:1988 (ABNT, 1988), a metodologia de Davenport (1993) e a de Holmes (1994). Um estudo de caso envolvendo a estimativa da confiabilidade de uma torre de telecomunicação também foi conduzido. Constatou-se que ambos os procedimentos de cálculo admitidos conduzem a níveis de segurança de mesma ordem de grandeza e que a elaboração de projetos de torres considerando a direção de incidência do vento como sendo a mais desfavorável à estrutura é demasiadamente conservadora. Como contribuição, verifica-se que o projeto ótimo de torres pode ser alcançado com base no nível de segurança desejado para diferentes velocidades máxima de vento associadas a intervalos de recorrência específicos. / Performance-based Wind Engineering (PBWE) is a design philosophy that aims to identify and quantify the uncertainties involved in the structural design in order to ensure predictable performance levels to buildings, no longer managing risk through the classical deterministic approach. However, due to the recent proposal of the methodology, there are few studies related to PBWE, each presenting different limitations. Thus, this paper proposes an adaptation of the Performance-based Wind Engineering methodology to the probabilistic analysis of the behavior of steel towers, evaluating different calculation models for estimating wind forces on this type of structure. To this end, uncertainties involved in the characterization of the wind field and structural strength were investigated and four different methods for the estimation of wind forces on steel towers were analyzed: two procedures relative to the Brazilian winds standard ABNT NBR 6123:1988 (ABNT, 1988), and the methodologies of Davenport (1993) and Holmes (1994). A case study concerning the reliability estimation of a telecommunication tower was also conducted. It was found that both assumed calculation procedures lead to security levels of the same order of magnitude and that the design of towers considering that the wind always blows from the worst direction is too conservative. As a contribution, it is found that the optimum design of towers can be achieved based on the desired security level for different maximum wind speeds associated to specific recurrence intervals.
35

Projeto baseado em desempenho de torres metálicas sujeitas à ação do vento / Performance-based design of steel towers subject to wind action

Rodolfo Krul Tessari 25 February 2016 (has links)
A Engenharia de Ventos Baseada em Desempenho (Performance-based Wind Engineering - PBWE) é uma filosofia de projeto que preconiza identificar e quantificar as incertezas envolvidas no projeto estrutural a fim de assegurar níveis previsíveis de desempenho às edificações, não mais gerenciando o risco através da clássica abordagem determinística. Contudo, devido à recente proposição da metodologia, ainda há poucos estudos relacionados à PBWE, cada qual apresentando diferentes limitações. Assim, o presente trabalho propõe uma adaptação da metodologia da Engenharia de Ventos Baseada em Desempenho à análise probabilística do comportamento de torres metálicas, avaliando diferentes modelos de cálculo para estimativa das forças do vento neste tipo de estrutura. Para tanto, investigou-se as incertezas envolvidas na caracterização do campo de ventos e da resistência estrutural e foram analisados quatro métodos distintos para a estimativa das forças de vento em torres metálicas: dois procedimentos de cálculo correspondentes à norma brasileira de ventos ABNT NBR 6123:1988 (ABNT, 1988), a metodologia de Davenport (1993) e a de Holmes (1994). Um estudo de caso envolvendo a estimativa da confiabilidade de uma torre de telecomunicação também foi conduzido. Constatou-se que ambos os procedimentos de cálculo admitidos conduzem a níveis de segurança de mesma ordem de grandeza e que a elaboração de projetos de torres considerando a direção de incidência do vento como sendo a mais desfavorável à estrutura é demasiadamente conservadora. Como contribuição, verifica-se que o projeto ótimo de torres pode ser alcançado com base no nível de segurança desejado para diferentes velocidades máxima de vento associadas a intervalos de recorrência específicos. / Performance-based Wind Engineering (PBWE) is a design philosophy that aims to identify and quantify the uncertainties involved in the structural design in order to ensure predictable performance levels to buildings, no longer managing risk through the classical deterministic approach. However, due to the recent proposal of the methodology, there are few studies related to PBWE, each presenting different limitations. Thus, this paper proposes an adaptation of the Performance-based Wind Engineering methodology to the probabilistic analysis of the behavior of steel towers, evaluating different calculation models for estimating wind forces on this type of structure. To this end, uncertainties involved in the characterization of the wind field and structural strength were investigated and four different methods for the estimation of wind forces on steel towers were analyzed: two procedures relative to the Brazilian winds standard ABNT NBR 6123:1988 (ABNT, 1988), and the methodologies of Davenport (1993) and Holmes (1994). A case study concerning the reliability estimation of a telecommunication tower was also conducted. It was found that both assumed calculation procedures lead to security levels of the same order of magnitude and that the design of towers considering that the wind always blows from the worst direction is too conservative. As a contribution, it is found that the optimum design of towers can be achieved based on the desired security level for different maximum wind speeds associated to specific recurrence intervals.
36

Advanced turbulence models for the simulation of air pollutants dispersion in urban area

Longo, Riccardo 10 September 2020 (has links) (PDF)
NOWADAYS, a number of studies keep on demonstrating the existence of a strong relation between high concentrations of particulate matter (PM) and the prevalence of human morbidity and mortality. Large particles can be filtered in the nose or in the throat, while fine particles (about10 micrometer) can settle in the bronchi and lungs, leading to more serious consequences. According to Karagulian et al. the major sources of urban air pollution are traffic (25%), combustion and agriculture (22%), domestic fuel burning (20%), natural dust (18%) and industrial activities (15%).As a consequence, the detailed study of dispersion phenomena within the urban canopy becomes a target of great interest. To this end, Computational Fluid Dynamics (CFD) can be successfully employed to predict turbulence and dispersion patterns, accounting for a detailed characterization of the pollutant sources, complex obstacles and atmospheric stability classes.Despite being intrinsically different phenomena, turbulence and dispersion are closely related. It is universally accepted that, to reach accurate prediction of the concentration field, it is necessary to properly reproduce the turbulence one. For this reason, the present PhD thesis is split into two main Sections: one focused on turbulence modelling and the subsequent, centered on the dispersion modelling.Thanks to its good compromise between accuracy of results and calculation time, Reynolds-averaged Navier-Stokes (RANS) still represents a valid alternative to more resource-demanding methods. However, focusing on the models’ performance in urban studies, Large Eddy Simulation (LES) generally outperforms RANS results, even if the former is at least one order of magnitude more expensive. Stemming from this consideration, the aim of this work is to propose a variety of approaches meant to solve some of the major limitations linked to standard RANS simulation and to further improve its accuracy in disturbed flow fields, without renouncing to its intrinsic feasibility. The proposed models are suitable for the urban context, being capable of automatically switching from a formulation proper for undisturbed flow fields to one suitable for disturbed areas. For neutral homogeneous atmospheric boundary layer (ABL), a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles and able to correctly represent the various roughness elements. Around obstacles, more performing closures are employed. The transition between the two treatments is achieved through the definition of a Building Influence Area (BIA). The finalgoal is to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.Focusing on the dispersion modelling framework, there exists a number of parameters which have to be properly specified. In particular, the definition of the turbulent Schmidt number Sct, expressing the ratio of turbulent viscosity to turbulent mass diffusivity, is imperative. Despite its relevance, the literature does not report a clear guideline on the definition of this quantity. Nevertheless, the importance of Sct with respect to dispersion is undoubted and further demonstrated in the works of different authors. For atmospheric boundary layer flows, typical constant values range between 0.2 and 1.3. As a matter of fact, the local variability of Sct is supported by experimental evidence and by direct numerical simulations (DNS). These observations further suggest that the turbulent Schmidt number should be prescribed as a dynamic variable. Following these observations a variable turbulent Schmidt number formulation is proposed in this work. The latter stems from the same hypothesis of the variable formulation developed by Gorlé et al. Moreover, the relevant uncertain model parameters are optimized through uncertainty quantification (UQ). This formulation further increased the accuracy of the predictions, and was successfully verified by Di Bernardino et al. However, the turbulent Schmidt number resulting from this formulation is still intrinsically linked to the turbulence model employed, i.e. to the Cμ coefficient. To overcome this constraint, the nature and the dependencies of Sct were further analyzed through correlation studies and employing principal component analysis (PCA) on data obtained through the proposed ABL RANS model. Subsequently, the same data-driven technique was employed based on the high-fidelity outcomes of a delayed Detached Eddy Simulation (dDES) to derive a generalized turbulentSchmidt number formulation. The latter can be employed within a wide range of turbulence models, without limiting its variability. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
37

Time-Resolved Adaptive Finite Element Simulations for Building Aerodynamics : A proof of concept on minimal computational resources / Tidsupplösta adaptiva finita elementsimuleringar för byggnadsaerodynamik : Ett koncepttest med minimala beräkningsresurser

van Beers, Linde January 2021 (has links)
The effect of building geometry on the wind environment of cities is such that it can cause problems like wind danger, discomfort and poor ventilation of airborne pollutants. Computational fluid dynamics (CFD) can play a role in assessing changes in wind environment caused by building projects before realisation at little cost. However, the current state-of-the-art methods, RANS and LES, force a steep trade-off between accuracy and computational cost, and neither method is truly predictive. Time-resolved adaptive direct finite element simulation (DFS) is a method for CFD that is predictive and automatically optimises the mesh for a goal quantity, making it both efficient and accurate. In this thesis, DFS was implemented in FEniCS and used on basic validation cases to provide a proof of concept for the use of this method in the building aerodynamics, on resources freely available to anyone. The results show that the method is accurate to within 10% of the validation data with respect to the goal quantity. Visually, the expected flow features are clearly identifiable. DFS was successfully applied to a relatively complicated building geometry, with a total computation time of about 120 core-hours. We conclude that DFS has significant potential as a method for evaluating urban wind environments. Furthermore, because of its ease of use and lack of parameters, DFS can play an important role in helping architects, designers and students understand the effect of urban geometries on the wind environment. This report provides a basis for further research on DFS for building aerodynamics, as validation on more diverse urban geometries is still necessary. / Effekten av byggnaders form och geometri är så viktig att den kan ge problem för ventilation av t.ex. föroreningar, för energieffektivitet, och för vindfaror med t.ex. hög vindhastihet som kan vara farligt eller skapa obehag. Beräkningsströmningsdynamik (CFD) kan ha en roll i bedömningen av byggnadsprojekt i ett tidigt skede till liten kostnad. Dock är de etablerade och ledande metodikerna, RANS och LES, inte prediktiva och tvingar fram en kompromiss mellan beräkningskosnad och noggrannhet. Vår metodik “Time-resolved adaptive direct finite element simulation” (DFS) är en metod för CFD som är prediktiv och automatiskt optimerar beräkningsnätet (och därmed beräkningskostnaden) för en given målkvantitet, som ger både effektivitet och noggrannhet. I denna avhandling implementerades DFS i FEniCS och användes i grundläggande valideringsfall för att ge ett proof of conceptför användning av denna metod i byggnadsaerodynamik, på resurser som är fritt tillgängliga för alla. Resultaten visar att metoden är korrekt inom 10% av valideringsdata med avseende på målkvantiteten. Visuellt är de förväntade flödesfunktionerna tydligt identifierbara. DFS applicerades framgångsrikt på en relativt komplicerad byggnadsgeometri med en total beräkningstid på cirka 120 kärntimmar, vilket är en försumbar kostnad. Vi drar slutsatsen att DFS har en betydande potential som metod för utvärdering av stadsvindmiljöer. Dessutom, på grund av dess användarvänlighet och frihet från parametrar, kan DFS spela en viktig roll för att hjälpa arkitekter, designers och studenter att förstå effekterna av stadsgeometrier på vindmiljön. Denna rapport ger en grund för vidare forskning om DFS för aerodynamik, eftersom validering av mer olika stadsgeometrier fortfarande är nödvändig.
38

Analýza působení větru na ocelové větrané opláštění / Analysis of The Effects of Wind on The Steel Ventilated Facade

Kloss, Tomáš January 2017 (has links)
This master´s thesis analyzes an effect of wind load on the ventilated facade claddings. The analysis is performed on the various types of facades, from unventilated to ventilated facades with a different geometrical arrangement of facade shell. The theoretical part describes the basic knowledge about the theory of flow, turbulence modeling, determining an optimal domain, verification of the calculation model and user interface in the ANSYS software. The final part compares the value of the wind load reduction depending on the change of the gap widths and the size of ventilated spaces. The resulting values are obtained by CFD simulations. The thesis includes a design and an assessment of the steel hall construction.
39

On antarctic wind engineering

Sanz Rodrigo, Javier 18 March 2011 (has links)
Antarctic Wind Engineering deals with the effects of wind on the built environment. The assessment of wind induced forces, wind resource and wind driven snowdrifts are the main tasks for a wind engineer when participating on the design of an Antarctic building. While conventional Wind Engineering techniques are generally applicable to the Antarctic environment, there are some aspects that require further analysis due to the special characteristics of the Antarctic wind climate and its boundary layer meteorology. <p>The first issue in remote places like Antarctica is the lack of site wind measurements and meteorological information in general. In order to complement this shortage of information various meteorological databases have been surveyed. Global Reanalyses, produced by the European Met Office ECMWF, and RACMO/ANT mesoscale model simulations, produced by the Institute for Marine and Atmospheric Research of Utrecht University (IMAU), have been validated versus independent observations from a network of 115 automatic weather stations. The resolution of these models, of some tens of kilometers, is sufficient to characterize the wind climate in areas of smooth topography like the interior plateaus or the coastal ice shelves. In contrast, in escarpment and coastal areas, where the terrain gets rugged and katabatic winds are further intensified in confluence zones, the models lack resolution and underestimate the wind velocity. <p>The Antarctic atmospheric boundary layer (ABL) is characterized by the presence of strong katabatic winds that are generated by the presence of surface temperature inversions in sloping terrain. This inversion is persistent in Antarctica due to an almost continuous cooling by longwave radiation, especially during the winter night. As a result, the ABL is stably stratified most of the time and, only when the wind speed is high it becomes near neutrally stratified. This thesis also aims at making a critical review of the hypothesis underlying wind engineering models when extreme boundary layer situations are faced. It will be shown that the classical approach of assuming a neutral log-law in the surface layer can hold for studies of wind loading under strong winds but can be of limited use when detailed assessments are pursued. <p>The Antarctic landscape, mostly composed of very long fetches of ice covered terrain, makes it an optimum natural laboratory for the development of homogeneous boundary layers, which are a basic need for the formulation of ABL theories. Flux-profile measurements, made at Halley Research Station in the Brunt Ice Shelf by the British Antarctic Survery (BAS), have been used to analyze boundary layer similarity in view of formulating a one-dimensional ABL model. A 1D model of the neutral and stable boundary layer with a transport model for blowing snow has been implemented and verified versus test cases of the literature. A validation of quasi-stationary homogeneous profiles at different levels of stability confirms that such 1D models can be used to classify wind profiles to be used as boundary conditions for detailed 3D computational wind engineering studies. <p>A summary of the wind engineering activities carried out during the design of the Antarctic Research Station is provided as contextual reference and point of departure of this thesis. An elevated building on top of sloping terrain and connected to an under-snow garage constitutes a challenging environment for building design. Building aerodynamics and snowdrift management were tested in the von Karman Institute L1B wind tunnel for different building geometries and ridge integrations. Not only for safety and cost reduction but also for the integration of renewable energies, important benefits in the design of a building can be achieved if wind engineering is considered since the conceptual phase of the integrated building design process.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0668 seconds