• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wind Power and Natural Disasters

Olauson, Jon January 2014 (has links)
Wind power can be related to natural disasters in several ways. This licentiate thesis gives some background and introduces four papers devoted to two aspects of this relation. The first section looks into how small-scale wind energy converters (WECs) could be used to generate power after a natural disaster. For this application diesel generators are the most common solution today, but there would be several advantages of replacing these systems. A study of off-grid systems with battery storage at 32 sites showed that photovoltaics (PV) were more suitable than WECs. The results were confirmed by a study for the entire globe; PV outperformed WECs at most sites when it comes to small-scale application. This is especially true for areas with a high disaster risk. Hybrid systems comprising both PV and WECs are however interesting at higher latitudes. For the Swedish case, it is shown that gridded data from a freely available meteorological model, combined with a statistical model, give good estimates of the mean wind speed at 10 meters above ground. This methodology of estimating the mean wind speed can be used when there is no time for a proper wind measurement campaign. The second section is directed towards wind power variability and integration. The results presented in the thesis are intended as a basis for future studies on how a substantially increased wind power capacity affects the electric grid in terms of stability, grid reinforcement requirements, increased balancing needs etc. A review of variability and forecastability for non-dispatchable renewable energy sources was performed together with researchers from the solar, wave and tidal power fields. Although a lot of research is conducted in these areas, it was concluded that more studies on combinations of the sources would be desirable. The disciplines could also learn from each other and benefit from the use of more unified methods and metrics. A model of aggregated hourly wind power production has finally been developed. The model is based on reanalysis data from a meteorological model and detailed information on Swedish WECs. The model proved very successful, both in terms of low prediction errors and in the match of probability density function for power and step changes of power. / Vindkraft kan relateras till naturkatastrofer på flera olika sätt. Den här licentiat\-avhandlingen ger bakgrund till och introducerar fyra artiklar som beskriver två aspekter av detta samband. I den första avdelningen undersöks hur småskalig vindkraft skulle kunna användas för att generera el efter en naturkatastrof. I dagsläget är det dieselaggregat som används för detta ändamål, men det skulle finnas stora fördelar med att övergå till förnybara system. En studie av 32 platser (myndigheten MSB:s utlandsstationeringar augusti 2012) visade att solceller var mer lämpade än vindkraftverk. Resultaten bekräftades av en studie för hela världen; solceller ger billigare system än småskaliga vindkraftverk för de flesta platser, inte minst om man tittar på områden som är utsatta för naturkatastrofer. Hybridsystem med både solceller och vindkraftverk var dock intressanta på högre breddgrader. För Sverige så visas det att data från en fritt tillgängliga meteorologisk modell tillsammans med en statistisk korrigering beroende på terrängtyp ger bra uppskattningar av medelvinden på 10 meters höjd. Den föreslagna metodiken kan vara användbar som ett komplement till vindmätningar eller om det inte finns tid eller möjlighet till en riktig mätkampanj. Den andra avdelningen är inriktad mot vindens variabilitet och integrering av vindkraft i kraftsystemet. De resultat som presenteras i denna avhandling är tänkta som en bas för framtida studier av hur en kraftigt ökad andel vindkraft påverkar elsystemet med avseende på stabilitet, nödvändiga nätförstärkningar, ökade krav på balanskraft etc. En översiktsstudie av variabilitet och prognosbarhet för intermittenta förnybara energikällor gjordes tillsammans med forskare inom sol-, våg och tidvattenkraft. Även om mycket forskning pågår inom dessa områden så var en slutsats att mer studier för kombinationer av olika källor skulle vara önskvärt. Forskare inom de olika disciplinerna skulle också kunna lära från varandra och dra fördel av gemensamma metoder och mått. Slutligen har en modell av aggregerad timvis vindkraftproduktion tagits fram. Modellen baseras på data från en meteorologisk modell samt detaljerad information om vindkraftverk i Sverige. Modellen visade sig vara mycket träffsäker, både vad gäller låga prediktionsfel och i överensstämmelse av sannolikhetsfördelning av effekt och stegförändring av timvis effekt.
2

On Distributed Balancing of Wind Power Forecast Deviations in Competitive Power Systems

Scharff, Richard January 2012 (has links)
Wind power generation does, on the one hand, contribute to a less polluting and more sustainable electric power generation mix. On the other hand, the uncertainty and the variability of the power output do challenge the operation of the power system: hourly variations in wind power generation are hardly predictable in a precise way. To decrease the need for balancing power, it might be beneficial from the overall system-perspective to subject power generating companies to stricter balancing incentives/rules. The way the market is designed has become crucial to exploit the existing flexibility in the power system and to increase the efficiency in its operation: inappropriate market designs can counteract all technical achievements. The work conducted for this thesis is embedded in a project on wind power integration and electricity market design following the aim to develop a simulation tool to analyse the consequences of changes in specific market rules. This thesis analyses wind power variations and forecast errors in the Swedish power system and explores the question whether internal ex-ante self-balancing can efficiently reduce the need for balancing power. Applying internal ex-ante self-balancing, every power generating company re-schedules its own power plants in order to balance its commitments towards other market actors with its newest production forecast. This is done shortly before the hour of delivery. To assess the value of this self-balancing, possible trading and scheduling decisions for power generating companies are modelled based on a hydro-thermal generation portfolio within the framework of the Nordic electricity market design. The model is based on a sequence of mixed-integer linear optimisation problems for the clearing of the different sub-markets. Both the data and the model have an hourly time resolution. In a case study, the model is applied on a simplified test-system. The need of real-time balancing by the transmission system operator, the total variable generation cost of the system, as well as the extent to which the power generating companies re-scheduled their production are then used as indicators to evaluate self-balancing. / <p>QC 20121017</p> / Short-term hydro power planning in power systems with large amounts of wind power / Elektra 36141: Korttidsplanering av vatten-värmekraftsystem vid stora mängder vindkraft: System-perspektivet
3

Analysis of Demand-Response Participation Strategies for Congestion Management in an Island Distribution Network

Ryckebusch, Gaëlle January 2015 (has links)
The Master Thesis is part of the Smart Grid Gotlandproject. This project aims at implementing smart grid solutionson the island of Gotland in order to be able to efficientlyintegrate large quantities of renewable energy production.In situations of high wind power production and lowconsumption, energy export problems may occur betweenGotland and the mainland. A novel approach to manageanticipated congestions, compared to traditional gridreinforcements, consists of using flexibility from demandresponse(DR) resources. However, such an approach presentschallenges as it requires both technical and economic considerations.This Master Thesis proposes and analyses twomarket-based strategies applied to detached houses for dayaheadcongestion management. The strategies are implementedin an Ancillary Service toolbox developed in theMATLAB programming environment.The first strategy involves using a dynamic network tariffwhile the second uses spot price optimization. Simulationsare performed for seasonal worst-case congestion scenarioswhile satisfying comfort and economic constraints ofthe DR participants. A sensitivity analysis is carried out toassess the impact of different spot price profiles and windpower production prognosis errors on the results.Results show that congestions are managed with a feasiblenumber of participants, but that their savings are negligiblefor both strategies (between 2 and 40 SEK/participant).Moreover, using a dynamic network tariff strategy impliesa DSO cost in the range of 1700-89000 SEK. These resultsapply for a 3-days congestion period, which is estimated tooccur 5-6 times a year if the maximum hosting capacity isincreased by 5 MW.To conclude, an AS toolbox with economic constraintsis feasible for Gotland conditions with a reasonable numberof DR participants. However, the simple cost-benefitanalysis that was carried out showed that the AS toolboxapproach was still much more costly than traditional gridreinforcement.
4

Analysis of Demand Response Solutions for Congestion Management in Distribution Networks

Brodén, Daniel January 2013 (has links)
According to the 20-20-20 targets set by the European Union, 50 percent of the Swedish electricity share is to be provided by renewable energy sources by 2020. The Smart Grid Gotland (SGG) project has emerged as a response to this target. The project aims at demonstrating a proof of concept on how smart grid solutions can be used to integrate large quantities of renewable energy sources in an existing network. The outcomes of the project are intended to pave the way for future renewable energy integration projects in Sweden. The Thesis focuses on one of the technical objectives of the SGG project, i.e. to increase the hosting capacity of wind power on Gotland from 195 MW to 200 MW by using Demand-Response (DR) from households and industries. DR consist of shifting peak-loads to peakproduction hours. The integration of additional wind power causes a risk of exceeding the transmission capacity of the power export cable between Gotland and the Swedish mainland. The approach considered for this Thesis is to use an Ancillary Service (AS) toolbox scheme based on multi-agent systems. The AS toolbox consist of flexibility tools such as DR on long-term, short-term, a battery energy storage system and a wind curtailment scheme. The DR activity includes space heating and domestic hot water consumption from detached houses on Gotland. The simulation results indicate that 1900 household participants are sufficient to balance the additional 5 MW for worst case scenarios. Furthermore, it is shown that the DR participation from industries contributes in some cases to a reduction of 700 household participants. The findings helped conclude that using an AS toolbox solution on Gotland is fully possible from a technical perspective. However, barriers that stand against its realisation are of economical nature and need to be investigated in future studies.
5

Business Models for an Aggregator : Is an Aggregator economically sustainable on Gotland?

Lambert, Quentin January 2012 (has links)
Under the determined impulse of the European Union to limit the environmental impact of energy-related services, the electricity sector will face several challenges in coming years. Integrating renewable energy sources in the distribution networks is certainly one of the most urging issues to be tackled with. The current grid and production structure cannot absorb the high penetration shares anticipated for 2020 without putting at risk the entire system. The innovative concept of smart grid offers promising solutions and interesting implementation possibilities. The objective of the thesis is to specifically study the technical and economic benefits that the creation of an aggregator on the Swedish island of Gotland would imply. Comparing Gotland's power system characteristics to the broad variety of solutions offered by demand side management, wind power integration enhancement by demand response appeared particularly suited. A business case, specifically oriented towards the minimisation of transmission losses by adapting the electric heat load of private households to the local wind production was designed. Numerical simulations have been conducted, evaluating the technical and economic outcomes, along with the environmental benets, under the current conditions on Gotland. Sensitivity analyses were also performed to determine the key parameters for a successful implementation. A prospective scenario for 2020, with the addition of electric vehicles, has finally been simulated to estimate the long term profitability of an aggregator on the island. The simulation results indicate that despite patent technical benefits for the distribution network, the studied service would not be profitable in the current situation on Gotland. This, because the transmission losses through the HVDC-cable concern limited amounts of power that are purchased on a market characterized by relatively cheap prices and low volatility. Besides, the high fixed costs the aggregator has to face to install technical equipment in every household constitutes another barrier to its setting up.

Page generated in 0.1206 seconds