• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Basophilic leukocytes in delayed hypersensitivity Experimental studies in man using the skin window technique.

Wolf-Jürgensen, Per. January 1966 (has links)
Thesis--Copenhagen. / Summary in Danish. Bibliography: p. [109]-120.
2

Basophilic leukocytes in delayed hypersensitivity Experimental studies in man using the skin window technique.

Wolf-Jürgensen, Per. January 1966 (has links)
Thesis--Copenhagen. / Summary in Danish. Bibliography: p. [109]-120.
3

Detection and Diagnosis of Stator and Rotor Electrical Faults for Three-Phase Induction Motor via Wavelet Energy Approach

Hussein, A.M., Obed, A.A., Zubo, R.H.A., Al-Yasir, Yasir I.A., Saleh, A.L., Fadhel, H., Sheikh-Akbari, A., Mokryani, Geev, Abd-Alhameed, Raed 08 April 2022 (has links)
Yes / This paper presents a fault detection method in three-phase induction motors using Wavelet Packet Transform (WPT). The proposed algorithm takes a frame of samples from the three-phase supply current of an induction motor. The three phase current samples are then combined to generate a single current signal by computing the Root Mean Square (RMS) value of the three phase current samples at each time stamp. The resulting current samples are then divided into windows of 64 samples. Each resulting window of samples is then processed separately. The proposed algorithm uses two methods to create window samples, which are called non-overlapping window samples and moving/overlapping window samples. Non-overlapping window samples are created by simply dividing the current samples into windows of 64 sam-ples, while the moving window samples are generated by taking the first 64 current samples, and then the consequent moving window samples are generated by moving the window across the current samples by one sample each time. The new window of samples consists of the last 63 samples of the previous window and one new sample. The overlapping method reduces the fault detection time to a single sample accuracy. However, it is computationally more expensive than the non-overlapping method and requires more computer memory. The resulting window sam-ples are separately processed as follows: The proposed algorithm performs two level WPT on each resulting window samples, dividing its coefficients into its four wavelet subbands. Infor-mation in wavelet high frequency subbands is then used for fault detection and activating the trip signal to disconnect the motor from the power supply. The proposed algorithm was first implemented in the MATLAB platform, and the Entropy power Energy (EE) of the high frequen-cy WPT subbands’ coefficients was used to determine the condition of the motor. If the induction motor is faulty, the algorithm proceeds to identify the type of the fault. An empirical setup of the proposed system was then implemented, and the proposed algorithm condition was tested under real, where different faults were practically induced to the induction motor. Experimental results confirmed the effectiveness of the proposed technique. To generalize the proposed meth-od, the experiment was repeated on different types of induction motors with different working ages and with different power ratings. Experimental results show that the capability of the pro-posed method is independent of the types of motors used and their ages.
4

Entwicklung und Evaluation eines Gewichtsfenstergenerators für das Strahlungstransportprogramm AMOS

Jakobi, Christoph 19 March 2018 (has links) (PDF)
Effizienzsteigernde Methoden haben die Aufgabe, die Rechenzeit von Monte Carlo Simulationen zur Lösung von Strahlungstransportproblemen zu verringern. Dazu gehören weitergehende Quell- oder Geometrievereinfachungen und die Gewichtsfenstertechnik als wichtigstes varianzreduzierendes Verfahren, entwickelt in den 1950er Jahren. Die Schwierigkeit besteht bis heute in der Berechnung geeigneter Gewichtsfenster. In dieser Arbeit wird ein orts- und energieabhängiger Gewichtsfenstergenerator basierend auf dem vorwärts-adjungierten Generator von T.E. BOOTH und J.S. HENDRICKS für das Strahlungstransportprogramm AMOS entwickelt und implementiert. Dieser ist in der Lage, die Gewichtsfenster sowohl iterativ zu berechnen und automatisch zu setzen als auch, deren Energieeinteilung selbstständig anzupassen. Die Arbeitsweise wird anhand des Problems der tiefen Durchdringung von Photonenstrahlung demonstriert, wobei die Effizienz um mehrere Größenordnungen gesteigert werden kann. Energieabhängige Gewichtsfenster sorgen günstigstenfalls für eine weitere Verringerung der Rechenzeit um etwa eine Größenordnung. Für eine praxisbezogene Problemstellung, die Bestrahlung eines Personendosimeters, kann die Effizienz hingegen bestenfalls vervierfacht werden. Quell- und Geometrieveränderungen sind gleichwertig. Energieabhängige Fenster zeigen keine praxisrelevante Effizienzsteigerung. / The purpose of efficiency increasing methods is the reduction of the computing time required to solve radiation transport problems using Monte Carlo techniques. Besides additional geometry manipulation and source biasing this includes in particular the weight windows technique as the most important variance reduction method developed in the 1950s. To date the difficulty of this technique is the calculation of appropriate weight windows. In this work a generator for spatial and energy dependent weight windows based on the forward-adjoint generator by T.E. BOOTH and J.S. HENDRICKS is developed and implemented in the radiation transport program AMOS. With this generator the weight windows are calculated iteratively and set automatically. Furthermore the generator is able to autonomously adapt the energy segmentation. The functioning is demonstrated by means of the deep penetration problem of photon radiation. In this case the efficiency can be increased by several orders of magnitude. With energy dependent weight windows the computing time is decreased additionally by approximately one order of magnitude. For a practice-oriented problem, the irradiation of a dosimeter for individual monitoring, the efficiency is only improved by a factor of four at best. Source biasing and geometry manipulation result in an equivalent improvement. The use of energy dependent weight windows proved to be of no practical relevance.
5

Entwicklung und Evaluation eines Gewichtsfenstergenerators für das Strahlungstransportprogramm AMOS

Jakobi, Christoph 13 March 2018 (has links)
Effizienzsteigernde Methoden haben die Aufgabe, die Rechenzeit von Monte Carlo Simulationen zur Lösung von Strahlungstransportproblemen zu verringern. Dazu gehören weitergehende Quell- oder Geometrievereinfachungen und die Gewichtsfenstertechnik als wichtigstes varianzreduzierendes Verfahren, entwickelt in den 1950er Jahren. Die Schwierigkeit besteht bis heute in der Berechnung geeigneter Gewichtsfenster. In dieser Arbeit wird ein orts- und energieabhängiger Gewichtsfenstergenerator basierend auf dem vorwärts-adjungierten Generator von T.E. BOOTH und J.S. HENDRICKS für das Strahlungstransportprogramm AMOS entwickelt und implementiert. Dieser ist in der Lage, die Gewichtsfenster sowohl iterativ zu berechnen und automatisch zu setzen als auch, deren Energieeinteilung selbstständig anzupassen. Die Arbeitsweise wird anhand des Problems der tiefen Durchdringung von Photonenstrahlung demonstriert, wobei die Effizienz um mehrere Größenordnungen gesteigert werden kann. Energieabhängige Gewichtsfenster sorgen günstigstenfalls für eine weitere Verringerung der Rechenzeit um etwa eine Größenordnung. Für eine praxisbezogene Problemstellung, die Bestrahlung eines Personendosimeters, kann die Effizienz hingegen bestenfalls vervierfacht werden. Quell- und Geometrieveränderungen sind gleichwertig. Energieabhängige Fenster zeigen keine praxisrelevante Effizienzsteigerung.:1 Einleitung 2 Theoretische Grundlagen 2.1 Strahlungsfeldgrößen und Strahlungstransportgleichung 2.2 Monte Carlo Methoden 2.3 Effizienzsteigernde Methoden 3 Gewichtsfenstergenerator 3.1 Güte der Ergebnisse 3.2 Iterative Berechnung 3.3 Implementation in AMOS 4 Anwendungsbeispiele 4.1 Tiefe Durchdringung von Photonenstrahlung 4.2 Gestreute Photonenstrahlung 5 Zusammenfassung und Ausblick 6 Literatur Anhänge / The purpose of efficiency increasing methods is the reduction of the computing time required to solve radiation transport problems using Monte Carlo techniques. Besides additional geometry manipulation and source biasing this includes in particular the weight windows technique as the most important variance reduction method developed in the 1950s. To date the difficulty of this technique is the calculation of appropriate weight windows. In this work a generator for spatial and energy dependent weight windows based on the forward-adjoint generator by T.E. BOOTH and J.S. HENDRICKS is developed and implemented in the radiation transport program AMOS. With this generator the weight windows are calculated iteratively and set automatically. Furthermore the generator is able to autonomously adapt the energy segmentation. The functioning is demonstrated by means of the deep penetration problem of photon radiation. In this case the efficiency can be increased by several orders of magnitude. With energy dependent weight windows the computing time is decreased additionally by approximately one order of magnitude. For a practice-oriented problem, the irradiation of a dosimeter for individual monitoring, the efficiency is only improved by a factor of four at best. Source biasing and geometry manipulation result in an equivalent improvement. The use of energy dependent weight windows proved to be of no practical relevance.:1 Einleitung 2 Theoretische Grundlagen 2.1 Strahlungsfeldgrößen und Strahlungstransportgleichung 2.2 Monte Carlo Methoden 2.3 Effizienzsteigernde Methoden 3 Gewichtsfenstergenerator 3.1 Güte der Ergebnisse 3.2 Iterative Berechnung 3.3 Implementation in AMOS 4 Anwendungsbeispiele 4.1 Tiefe Durchdringung von Photonenstrahlung 4.2 Gestreute Photonenstrahlung 5 Zusammenfassung und Ausblick 6 Literatur Anhänge

Page generated in 0.0554 seconds