• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Factors driving range expansion of white-tailed deer, Odocoileus virginianus, in the boreal forest of northern Alberta, Canada

Dawe, Kimberly Louise Unknown Date
No description available.
2

Anthropogenic impact on predator guilds and ecosystem processes : Apex predator extinctions, land use and climate change

Pasanen Mortensen, Marianne January 2014 (has links)
Humans affect ecosystems by changing species compositions, landscape and climate. This thesis aims to increase our understanding of anthropogenic effects on mesopredator abundance due to changes in apex predator status, landscape and climate. I show that in Eurasia the abundance of a mesopredator, the red fox (Vulpes vulpes), is limited top-down by the Eurasian lynx (Lynx lynx) and bottom-up by winter severity. However, where lynx has been eradicated, fox abundance is instead related to bottom-factors such as cropland (paper I, II). Fox abundance was highest when croplands constituted 25% of the landscape (paper II). I also project red fox abundance in Sweden over the past 200 years and in future scenarios in relation to lynx density, land use and climate change. The projected fox abundance was highest in 1920, when lynx was eradicated and the proportion of cropland was 22%. In 2010, when lynx had recolonised, the projected fox abundance was lower than in 1920, but higher than in 1830. Future scenarios indicated that lynx abundance must increase in respond to climate change to keep fox at the same density as today. The results suggest a mesopredator release when lynx was eradicated, boosted by land use and climate change, and that changes in bottom-up factors can modify the relative strength of top-down factors (paper IV). From 1846-1922, lynx, wolverine (Gulo gulo) and grey wolf (Canis lupus) declined in Scandinavia due to persecution; however I show that the change in wolverine abundance was positively related to the changes in lynx and wolf abundance. This indicates that wolverine is subsidized by carrions from lynx and wolf kills rather than limited top-down by them (paper III). This thesis illustrates how mesopredator abundance is determined by a combination of top-down and bottom-up processes, and how anthropogenic impacts not only can change the structures of predator guilds, but also may modify top-down processes through changes in bottom-up factors. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 3: Submitted. Paper 4: Manuscript.</p><p> </p>
3

Physiological and ecological aspects of winter torpor in captive and free-ranging striped skunks

Hwang, Yeen Ten 12 May 2005
<p>The principle objective of this investigation was to develop an understanding of the physiological response and ecological aspects of winter torpor of small carnivores, specifically striped skunks (<i>Mephitis mephitis</i>) in the northern environment. An experiment was undertaken to investigate the physiological response of skunks to solitary and communal over-winter strategies. Solitary skunks were able to undergo daily torpor to conserve energy to survive the winter, whereas communal skunks were able to use social huddling to reduce energy expenditure and rarely entered torpor. Due to seasonal changes in life requirements, den selection criteria change throughout the year. I examined the landscape metrics and habitat characteristics surrounding dens to evaluate the hierarchical selection and use of dens during winter (i.e., for torpor) and summer (i.e., for parturition). Den structures commonly used for winter dens were buildings, whereas den structures used for maternity dens were rockpiles and underground burrows. Habitat surrounding den sites influenced den use; animals chose den sites closer to roads, water sources, habitat edges, and crop fields. Seasonal movements of skunks from winter dens to the following summer home ranges were examined with respect to winter grouping (i.e., solitary or communal) and winter den structure (i.e., underground burrow or building) to investigate factors that influence spatial distribution of skunks. Male and female skunks moved similar distances (~1.5 km) from winter dens to the center of home ranges established in summer, irrespective of winter grouping status and winter den structure use. Due to limited movement in spring, skunks from communal winter dens had higher spatial overlap of summer home ranges than did skunks from solitary dens, producing spatial aggregation of skunk activities surrounding winter communal den sites. Consequently, winter communal dens represent localized hotspots in the landscape. The effects of extrinsic variables (i.e., environment and diseases) and intrinsic characteristics (i.e., age, gender, and body condition) on cumulative winter survival rate were examined. Winter survival rates were driven mostly by winter condition (i.e., low ambient temperature and snow depth), rabies, and body condition. These results suggest that winter severity probably poses a limit on the northern distribution of the species.</p>
4

Physiological and ecological aspects of winter torpor in captive and free-ranging striped skunks

Hwang, Yeen Ten 12 May 2005 (has links)
<p>The principle objective of this investigation was to develop an understanding of the physiological response and ecological aspects of winter torpor of small carnivores, specifically striped skunks (<i>Mephitis mephitis</i>) in the northern environment. An experiment was undertaken to investigate the physiological response of skunks to solitary and communal over-winter strategies. Solitary skunks were able to undergo daily torpor to conserve energy to survive the winter, whereas communal skunks were able to use social huddling to reduce energy expenditure and rarely entered torpor. Due to seasonal changes in life requirements, den selection criteria change throughout the year. I examined the landscape metrics and habitat characteristics surrounding dens to evaluate the hierarchical selection and use of dens during winter (i.e., for torpor) and summer (i.e., for parturition). Den structures commonly used for winter dens were buildings, whereas den structures used for maternity dens were rockpiles and underground burrows. Habitat surrounding den sites influenced den use; animals chose den sites closer to roads, water sources, habitat edges, and crop fields. Seasonal movements of skunks from winter dens to the following summer home ranges were examined with respect to winter grouping (i.e., solitary or communal) and winter den structure (i.e., underground burrow or building) to investigate factors that influence spatial distribution of skunks. Male and female skunks moved similar distances (~1.5 km) from winter dens to the center of home ranges established in summer, irrespective of winter grouping status and winter den structure use. Due to limited movement in spring, skunks from communal winter dens had higher spatial overlap of summer home ranges than did skunks from solitary dens, producing spatial aggregation of skunk activities surrounding winter communal den sites. Consequently, winter communal dens represent localized hotspots in the landscape. The effects of extrinsic variables (i.e., environment and diseases) and intrinsic characteristics (i.e., age, gender, and body condition) on cumulative winter survival rate were examined. Winter survival rates were driven mostly by winter condition (i.e., low ambient temperature and snow depth), rabies, and body condition. These results suggest that winter severity probably poses a limit on the northern distribution of the species.</p>

Page generated in 0.0859 seconds