• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control and Automation of a Heat Shrink Tubing Process

Yousefi Darani, Shahrokh 08 1900 (has links)
Heat shrink tubing is used to insulate wire conductors, protect wires, and to create cable entry seals in wire harnessing industries. Performing this sensitive process manually is time consuming, the results are strongly dependent on the operator’s expertise, and the process presents safety concerns. Alternatively, automating the process minimizes the operators’ direct interaction, decreases the production cost over the long term, and improves quantitative and qualitative production indicators dramatically. This thesis introduces the automation of a heat shrink tubing prototype machine that benefits the wire harnessing industry. The prototype consists of an instrumented heat chamber on a linear positioning system, and is fitted with two heat guns. The chamber design allows for the directing of hot air from the heat guns onto the wire harness uniformly through radially-distributed channels. The linear positioning system is designed to move the heat chamber along the wire harness as the proper shrinkage temperature level is reached. Heat exposure time as a major factor in the heat shrink tubing process can be governed by controlling the linear speed of the heat chamber. A control unit manages the actuator position continuously by measuring the chamber’s speed and temperature. A model-based design approach is followed to design and test the controller, and MATLAB/Simulink is used as the simulation environment. A programmable logic controller is selected as the controller implementation platform. The control unit performance is examined and its responses follow the simulation results with adequate accuracy.

Page generated in 0.3468 seconds