• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 494
  • 114
  • 84
  • 57
  • 34
  • 17
  • 11
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 989
  • 989
  • 989
  • 188
  • 160
  • 149
  • 124
  • 116
  • 115
  • 115
  • 114
  • 111
  • 105
  • 105
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Time Synchronization In Measurement Networks

Kaya, Zahit Evren 01 March 2008 (has links) (PDF)
AMR (Automatic Measurement Reading) applications usually require measurement data to be collected from separate locations. In order to combine the data retrieved from separate sources into a meaningful result, all sources should share a common time sense. Therefore, it is necessary to implement a synchronization scheme in measurement networks. In this thesis, a synchronization scheme which combines GPS (Global Positioning System) and two high accuracy WSN (Wireless Sensor Network) time synchronization algorithms will be proposed and evaluated. The synchronization accuracy of the proposed method is compared to the accuracy of NTP (Network Time Protocol) by simulation. This research work is fully supported by the Public Research Grant Committee (KAMAG) of TUBiTAK within the scope of National Power Quality Project of Turkey with the project No: 105G129.
362

On the sampling design of high-dimensional signal in distributed detection through dimensionality reduction

Tai, Chih-hao 13 August 2008 (has links)
This work considers the sampling design for detection problems.Firstly,we focus on studying the effect of signal shape on sampling design for Gaussian detection problem.We then investigate the sampling design for distributed detection problems and compare the performance with the single sensor context. We also propose a sampling design scheme for the cluster-based wireless sensor networks.The cluster head employs a linear combination fusion to reduce the dimension of the sampled observation.Mathematical verification and simulation result show that the performance loss caused by the dimensionality reduction is exceedingly small as compared with the benchmark scheme,which is the sampling scheme without dimensionality reduction.In particular,there is no performance loss when the identical sampling points are employed at all sensor nodes.
363

Distributed Detection Using Censoring Schemes with an Unknown Number of Nodes

Hsu, Ming-Fong 04 September 2008 (has links)
The energy efficiency issue, which is subjected to an energy constraint, is important for the applications in wireless sensor network. For the distributed detection problem considered in this thesis, the sensor makes a local decision based on its observation and transmits a one-bit message to the fusion center. We consider the local sensors employing a censoring scheme, where the sensors are silent and transmit nothing to fusion center if their observations are not very informative. The goal of this thesis is to achieve an energy efficiency design when the distributed detection employs the censoring scheme. Simulation results show that we can have the same error probabilities of decision fusion while conserving more energy simultaneously as compared with the detection without using censoring schemes. In this thesis, we also demonstrate that the error probability of decision fusion is a convex function of the censoring probability.
364

The Worst-case and Best-case Coverage Problems in Wireless Sensor Networks

Hou, Yung-tsung 10 June 2009 (has links)
Wireless sensor networks provide a wide range of applications, such as environment surveillance, hazard monitoring, traffic control, and other commercial or military applications. The quality of service provided by a sensor network relies on its coverage, i.e., how well an event can be tracked by sensors. This research studies issues about sensor coverage: (1) how to optimally deploy new sensors in order to improve the coverage of an existing network, (2) how to properly measure the coverage when the path is a line. The best- and worst-case coverage problems that are related to the observability of a path are addressed and formulated into computational geometry problems. We prove that there exists a duality between the two coverage problems, and then solve the two problems together. The presented new-node placement algorithm is shown to deploy new nodes optimally in polynomial time. However, in some applications, such as highway monitoring and anti-missile interception systems, the trajectory of a target is linear but we can not find suitable coverage measurement for the straight-line path in previous research. Therefore, this research presents novel algorithms for coverage measurement of straight-line paths. Based on computational geometry and graph theory, we propose plane sweep algorithms to find the optimal straight-line paths for both the best-case and worst-case coverage problems in polynomial time. Both mathematical analysis and simulations are used to prove the optimality of our algorithms.
365

Antenna integration for wireless and sensing applications

Wu, Terence 26 May 2011 (has links)
As integrated circuits become smaller in size, antenna design has become the size limiting factor for RF front ends. The size reduction of an antenna is limited due to tradeoffs between its size and its performance. Thus, combining antenna designs with other system components can reutilize parts of the system and significantly reduce its overall size. The biggest challenge is in minimizing the interference between the antenna and other components so that the radiation performance is not compromised. This is especially true for antenna arrays where the radiation pattern is important. Antenna size reduction is also desired for wireless sensors where the devices need to be unnoticeable to the subjects being monitored. In addition to reducing the interference between components, the environmental effect on the antenna needs to be considered based on sensors' deployment. This dissertation focuses on solving the two challenges: 1) designing compact multi-frequency arrays that maintain directive radiation across their operating bands and 2) developing integrated antennas for sensors that are protected against hazardous environmental conditions. The first part of the dissertation addresses various multi-frequency directive antennas arrays that can be used for base stations, aerospace/satellite applications. A cognitive radio base station antenna that maintains a consistent radiation pattern across the operating frequencies is introduced. This is followed by multi-frequency phased array designs that emphasize light-weight and compactness for aerospace applications. The size and weight of the antenna element is reduced by using paper-based electronics and internal cavity structures. The second part of the dissertation addresses antenna designs for sensor systems such as wireless sensor networks and RFID-based sensors. Solar cell integrated antennas for wireless sensor nodes are introduced to overcome the mechanical weakness posed by conventional monopole designs. This can significantly improve the sturdiness of the sensor from environmental hazards. The dissertation also introduces RFID-based strain sensors as a low-cost solution to massive sensor deployments. With an antenna acting as both the sensing device as well as the communication medium, the cost of an RFID sensor is dramatically reduced. Sensors' strain sensitivities are measured and theoretically derived. Their environmental sensitivities are also investigated to calibrate them for real world applications.
366

Stochastic modeling of cooperative wireless multi-hop networks

Hassan, Syed Ali 18 October 2011 (has links)
Multi-hop wireless transmission, where radios forward the message of other radios, is becoming popular both in cellular as well as sensor networks. This research is concerned with the statistical modeling of multi-hop wireless networks that do cooperative transmission (CT). CT is a physical layer wireless communication scheme in which spatially separated wireless nodes collaborate to form a virtual array antenna for the purpose of increased reliability. The dissertation has two major parts. The first part addresses a special form of CT known as the Opportunistic Large Array (OLA). The second part addresses the signal-to-noise ratio (SNR) estimation for the purpose of recruiting nodes for CT. In an OLA transmission, the nodes from one level transmit the message signal concurrently without any coordination with each other, thereby producing transmit diversity. The receiving layer of nodes receives the message signal and repeats the process using the decode-and-forward cooperative protocol. The key contribution of this research is to model the transmissions that hop from one layer of nodes to another under the effects of channel variations, carrier frequency offsets, and path loss. It has been shown for a one-dimensional network that the successive transmission process can be modeled as a quasi-stationary Markov chain in discrete time. By studying various properties of the Markov chain, the system parameters, for instance, the transmit power of relays and distance between them can be optimized. This optimization is used to improve the performance of the system in terms of maximum throughput, range extensions, and minimum delays while delivering the data to the destination node using the multi-hop wireless communication system. A major problem for network sustainability, especially in battery-assisted networks, is that the batteries are drained pretty quickly during the operation of the network. However, in dense sensor networks, this problem can be alleviated by using a subset of nodes which take part in CT, thereby saving the network energy. SNR is an important parameter in determining which nodes to participate in CT. The more distant nodes from the source having least SNR are most suitable to transmit the message to next level. However, practical real-time SNR estimators are required to do this job. Therefore, another key contribution of this research is the design of optimal SNR estimators for synchronized as well as non-synchronized receivers, which can work with both the symbol-by-symbol Rayleigh fading channels as well as slow flat fading channels in a wireless medium.
367

Low-delay sensing and transmission in wireless sensor networks

Karlsson, Johannes Unknown Date (has links)
<p>With the increasing popularity and relevance of ad-hoc wireless sensor networks, cooperative transmission is more relevant than ever. In this thesis, we consider methods for optimization of cooperative transmission schemes in wireless sensor networks. We are in particular interested in communication schemes that can be used in applications that are critical to low-delays, such as networked control, and propose suitable candidates of joint source-channel coding schemes. We show that, in many cases, there are significant gains if the parts of the system are jointly optimized for the current source and channel. We especially focus on two means of cooperative transmission, namely distributed source coding and relaying.</p><p>In the distributed source coding case, we consider transmission of correlated continuous sources and propose an algorithm for designing simple and energy-efficient sensor nodes. In particular the cases of the binary symmetric channel as well as the additive white Gaussian noise channel are studied. The system works on a sample by sample basis yielding a very low encoding complexity, at an insignificant delay. Due to the source correlation, the resulting quantizers use the same indices for several separated intervals in order to reduce the quantization distortion.</p><p>For the case of relaying, we study the transmission of a continuous Gaussian source and the transmission of an uniformly distributed discrete source. In both situations, we propose design algorithms to design low-delay source-channel and relay mappings. We show that there can be significant power savings if the optimized systems are used instead of more traditional systems. By studying the structure of the optimized source-channel and relay mappings, we provide useful insights on how the optimized systems work. Interestingly, the design algorithm generally produces relay mappings with a structure that resembles Wyner-Ziv compression.</p>
368

Health monitoring of drive connected three-phase induction motors from wired towards wireless sensor networks /

Xue, Xin. January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 20, 2010). Includes bibliographical references. Also issued in print.
369

Modeling the Behavior of an Electronically Switchable Directional Antenna for Wireless Sensor Networks

Silase, Geletu Biruk January 2011 (has links)
Reducing power consumption is among the top concerns in Wireless Sensor Networks, as the lifetime of a Wireless Sensor Network depends on its power consumption. Directional antennas help achieve this goal contrary to the commonly used omnidirectional antennas that radiate electromagnetic power equally in all directions, by concentrating the radiated electromagnetic power only in particular directions. This enables increased communication range at no additional energy cost and reduces contention on the wireless medium. The SPIDA (SICS Parasitic Interference Directional Antenna) prototype is one of the few real-world prototypes of electronically switchable directional antennas for Wireless Sensor Networks. However, building several prototypes of SPIDA and conducting real-world experiments using them may be expensive and impractical. Modeling SPIDA based on real-world experiments avoids the expenses incurred by enabling simulation of large networks equipped with SPIDA. Such a model would then allow researchers to develop new algorithms and protocols that take advantage of the provided directional communication on existing Wireless Sensor Network simulators. In this thesis, a model of SPIDA for Wireless Sensor Networks is built based on thoroughly designed real-world experiments. The thesis builds a probabilistic model that accounts for variations in measurements, imperfections in the prototype construction, and fluctuations in experimental settings that affect the values of the measured metrics. The model can be integrated into existing Wireless Sensor Network simulators to foster the research of new algorithms and protocols that take advantage of directional communication. The model returns the values of signal strength and packet reception rate from a node equipped with SPIDA at a certain point in space given the two-dimensional distance coordinates of the point and the configuration of SPIDA as inputs. / Phone:+46765816263 Additional email: burkaja@yahoo.com
370

Telemetry System for Remote Monitoring of Utility Usage in Commercial and Residential Structures

Grott, Steven, Lecko, David, Parker, Ryan, Price, Nathan 10 1900 (has links)
ITC/USA 2012 Conference Proceedings / The Forty-Eighth Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2012 / Town and Country Resort & Convention Center, San Diego, California / The system described in this paper can monitor utility usage in commercial and residential structures, and send an alert message over conventional cell phone networks when it detects an anomalous condition. Such a condition could indicate a utility outage, structure failure, HVAC system failure, water leak, etc. The microcontroller-based system can measure electrical current, carbon monoxide, methane, liquid propane, temperature, barometric pressure, and altitude using a wired and wireless sensor network. The microcontroller displays the measurements on local and external graphical user interface, and sends SMS alert messages when necessary. The system may be retrofitted into existing structures.

Page generated in 0.0689 seconds