• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of the Ability of Adhesives to Substitute Nails in Wooden Block Pallets

Alvarez, Gloria Amelia 01 February 2019 (has links)
The most common fastening technique that is used to connect the components of wooden pallets together are helically or annularly threaded pallet nails. Pallet nails create a strong durable connection and increase manufacturing efficiency for a low cost. However, nails can also cause iron staining, wood splitting, and when exposed can cause product damage or personnel injury. Using adhesives could be a solution to these problems, but only if the adhesives' strength and durability is comparable or higher than nails. The objective of the study was to investigate the tensile and shear strength of pallet connections secured using commercially available wood adhesives and compare their performance to pallet connections secured using common pallet nails. The lowest pre-compression pressure resulted in the best tension and shear performance for a solvent based construction adhesive (SBCA). The pre-compression pressure did not have any practical effect on the performance of the two-part emulsion polymer isocyanate (EPI) adhesive. Samples made with the solvent based construction adhesive (SBCA) had greater strength and energy at failure than nailed samples. Meanwhile, the samples made with the two-part emulsion polymer isocyanate (EPI) adhesive had equal or greater strength than nailed samples, except for during the tension parallel to the grain tests in which they had equal or lower strength. / MS / The most common technique used to connect the components of wooden pallets together is nails. Pallet nails create a strong connection with high manufacturing efficiency for a low cost. However, nails can cause iron staining, wood splitting, and when exposed can cause product damage or personnel injury. Using adhesives could be a solution to these problems, but only if the adhesives’ strength and durability is comparable or higher than nails. The objective of this study was to investigate the tensile and shear strength of pallet connections when secured using commercially available wood adhesives and compare its performance to pallet connections secured by using common pallet nails. The lowest pre-compression pressure tested resulted in the best overall performance for a solvent based construction adhesive (SBCA); meanwhile, pre-compression pressure did not have any practical effect on the performance of the two-part emulsion polymer isocyanate (EPI) adhesive tested. Therefore, using a lower pre-compression pressure would provide adequate performance and could also improve the ease of manufacturing and potentially reduce overall costs. Based on the tests conducted it was found that the solvent based construction adhesive (SBCA) demonstrated the best performance of all connection methods and could be a potential replacement for nails. More tests, such as weathering and impact, should be conducted to determine the full limitations of the adhesive in use.
2

Predicting the Joint Stiffness of Wooden Pallets Assembled with Lag Screws and Carriage Bolts

Keller, Joseph David 20 April 2023 (has links)
Master of Science / Pallets are used all over the world in the field of distribution. The strength values associated with a pallet have been thoroughly investigated by many different researchers; however, the stiffness values associated with pallet joints have not. The goal of this work was to investigate the stiffnesses associated with pallets joints made with lag screws and carriage bolts. It is important to understand that different materials, fastening methods, and design considerations can have a huge impact on the stiffness of the joint. This paper will discuss the various tests that were used to measure the actual stiffness of pallet joints and the results of those tests. Afterwards, the researchers detail their attempt to predict the stiffness using an equation created from the actual test data. Finally, by understanding the effects of these various factors, better pallet designs can be created that are both safer and stronger using the investigated alternative fasteners.

Page generated in 1.3147 seconds