• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solbil : Designundersökning av övervakningssystem och automatisk energiförbrukningsprognos för en solbil / Solar car : Design study of a monitoring system and automatic energy consumption forecasting for a solar car

Eriksson, Klas-Göran, Peterson, Andreas January 2017 (has links)
Jönköping University Solar Team deltog år 2015 i tävlingen World Solar Challenge som körs vartannat år i Australien. Team från hela världen deltar i denna tävling där de konstruerar solbilar som de sedan tävlar med i ett race på ca 3000 km från Darwin till Adelaide. En solbil är en elbil som även är utrustad med solpaneler för att ge en teoretiskt oändlig körsträcka så länge bilen har tillgång till solenergi. Jönköping University kom på 15 plats i detta race och ville till nästa race förbättra sin konkurrenskraft. Eftersom det var ett race och varje teams mål var att använda sin bil så effektivt som möjligt behövdes ett system för att övervaka och logga batteridata och presentera det för teamet. Det var även fördelaktigt om teamet kunde få någon form av energiprognos för att kunna bestämma vilken hastighet som solbilen bör hålla. Ett system som loggar och överför denna information från solbilen till en följebil utvecklades och utvärderades. Syftet med denna studie var således: Öka Jönköping University Solar Teams konkurrenskraft genom att förse följebilen med ett beslutsstöd som i realtid övervakar och loggar solbilens batterinivå och energiförbrukning. Design Science Research användes som metod för att genomföra detta syfte, vilket gav möjligheten att utveckla systemet som en artefakt och använda denna för att presentera resultatet. Tre olika experiment utfördes för att konstatera funktionaliten på den trådlösa kommunikationen, hur rättvisande systemet var samt hur väl energiförbrukningen kunde förutsägas. I resultatet beskrivs hela artefakten och tillsammans med experimenten konstaterades att systemet kommer att ge Jönköping University Solar Team en högre konkurrenskraft i nästa race. / Jönköping University Solar Team participated in the 2015 edition of World Solar Challenge, which is held every other year in Australia. Teams from all around the world participates in the competition in which they construct a solar car and competes in a 3000 km long race from Darwin to Adelaide. A solar car is an electric car equipped with solar panels to give it a theoretical infinite mileage as long as the car have access to solar energy. Jönköping University came in 15th place in this race and would like to improve their competitiveness in the next race. Because it is a competition and the goal for every team is to use their car as efficiently as possible a system to log and monitor the battery and present the information to the team was needed. It would also be good to have some kind of energy consumption forecast that would be used to decide the speed the solar car should keep. A system that collect, stores and transmits the information from the solar car to an escort vehicle was developed and evaluated. Thus, the pursues of this studies were: Improve Jönköping University Solar Teams competitiveness by provide a decision support which in real time monitor and log the solar car battery level and energy consumption. Design Science Research was used as a method to realize this purpose, which gave the opportunity to develop the system as an artifact and use this to present the result. Three different experiments were constructed to determine the functionality of the wireless communication, how accurate the system was and how well the energy consumption could be predicted. In the results the artifact is described as a whole and together with the experiments it is found that the system will give Jönköping University Solar Team a higher competitiveness in the next race.
2

Decision making for the design of solar cars and basis for drivingstrategy : General estimation of recommended mean speed for solar cars

Sélea, Isac, Thorleifsson, Håkan January 2021 (has links)
The global interest in green vehicleshas been growing since it is letting out less pollution than normal internal combustion engines (ICE) and many people want to get into the ecological-friendly alternative mode of transport. The solar car is one of these types of green vehicles, which is powered by renewable energy with zero emissions. The solar car makes use of its solar panel that uses photovoltaic cells to convert sunlight into electricity to the batteries and to also power the electric motor. The state of solar cars is that it is almost exclusively for competition and when competing a strategy is needed to get the best placement. Having knowledge about how the car is behaving is a good basis for building a driving strategy. Therefore, a case study is made on World Solar Challenge (WSC) focused on the cars of JU Solar team with the use of datasets such as topographical data and solar irradiation. An optimization model is made that inputs these datasets and simulates a time period (an hour) and checks the set battery discharge rate (BDR or C rating). It is concluded that a safe BDR is between 8 to 9 % per hour (i.e. 0.08 to 0.09 C), relative to the full capacity of the battery. Results shows an improved mean speeds of the solar cars and improved finish times. The model also works very well for solar cars that are not meant for racing. Since it keeps a relatively stable state of charge for long term driving, that ensures battery longevity. With these results JU Solar team can use this model to improve their driving strategy but could also be used for economical driving for the future of commercial solar cars. This paper recommends to follow a simple procedure, to keep the BDR on 9% as long as the sun irradiation stays above 800 W/m2, and lower the BDR to 8% if irradiation goes below 800 W/m. Adjustments to increase the BDR for the end of the race is also recommended for optimal driving strategy.

Page generated in 0.1036 seconds