1 |
Autonomous visual tracking of stationary targets using small unmanned aerial vehiclesPrince, Robert A. 06 1900 (has links)
Approved for public release, distribution is unlimited / A control system was developed for autonomous visual tracking of a stationary target using a small unmanned aerial vehicle. The kinematic equations of this problem were developed, and the insight obtained from examination was applied in developing controllers for the system. This control system controlled the orientation of the camera to keep it constantly pointing at the target, and also controlled the trajectory of the aircraft in flight around the target. The initial control law that was developed drives the aircraft trajectory to a constant radius around the target. The range to the target is not directly measurable, so it was estimated using steady state Kalman filters. Once a range estimate is obtained, it is used to control the range to the target, and the aircraft trajectory is driven toward a circle with a specified radius. Initial tests of the control system with Simulink simulations have shown good performance of the control system. Further testing with hardware will be conducted, and flight tests are scheduled to be conducted in the near future. Conclusions are drawn and recommendations for further study are presented. / Ensign, United States Navy
|
2 |
Autonomous landing system for a UAV / Autonomous landing system for a Unmanned Aerial VehicleLizarraga, Mariano I. 03 1900 (has links)
Approved for public release, distribution is unlimited / This thesis is part of an ongoing research conducted at the Naval Postgraduate School to achieve the autonomous shipboard landing of Unmanned Aerial Vehicles (UAV). Two main problems are addressed in this thesis. The first is to establish communication between the UAV's ground station and the Autonomous Landing Flight Control Computer effectively. The second addresses the design and implementation of an autonomous landing controller using classical control techniques. Device drivers for the sensors and the communications protocol were developed in ANSI C. The overall system was implemented in a PC104 computer running a real-time operating system developed by The Mathworks, Inc. Computer and hardware in the loop (HIL) simulation, as well as ground test results show the feasibility of the algorithm proposed here. Flight tests are scheduled to be performed in the near future. / Lieutenant Junior Grade, Mexican Navy
|
Page generated in 0.0345 seconds