• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude du rôle de l’auto-organisation de l’actine cytoplasmique au sein de deux systèmes modèles : extraits cellulaires de Xénope et ovocytes de souris / New insights into the roles of cytoplasmic F-actin self-organization using two model systems : Xenopus egg extracts and mouse oocytes

Colin, Alexandra 15 September 2017 (has links)
La division cellulaire est un élément clé du développement. Pendant ce processus, le matériel génétique (chromosomes) est distribué entre les deux cellules filles. Cette distribution est effectuée par le fuseau mitotique ou méiotique ; une mauvaise formation de cette structure peut être critique. Le cytosquelette joue un rôle prédominant dans la division cellulaire. Malgré des progrès importants dans la compréhension de son rôle dans le processus de division cellulaire, de nombreuses questions restent encore sans réponse et des progrès techniques pour étudier ces phénomènes sont nécessaires. Dans cette thèse, nous avons étudié le rôle de l’auto-organisation de l’actine cytoplasmique dans deux systèmes modèles : les extraits cellulaires de Xénope et les ovocytes de souris. En utilisant une approche interdisciplinaire, nous avons développé de nouveaux outils expérimentaux et analytiques pour étudier le rôle de l’actine cytoplasmique pendant la division cellulaire. En encapsulant les extraits cellulaires de Xénope dans des gouttes, nous pouvons mimer le volume cellulaire. Nous utilisons ce système pour étudier les interactions entre l’actine et les microtubules. Dans un premier projet, nous avons montré que l’auto-organisation de l’actine peut déclencher des cascades de signalisation. Grâce à l’ingénierie de deux propriétés de l’actine, nous avons démontré que l’auto-organisation de ce polymère peut permettre l’assemblage de microtubules. Dans un deuxième projet, nous avons montré que la dynamique de l’actine cytoplasmique peut induire des contraintes sur l’organisation et la dynamique des microtubules. Nos résultats suggèrent que les propriétés dynamiques du réseau d’actine sont un facteur important pour l’assemblage des microtubules. Dans l’ovocyte de souris, nous avons développé une méthode pour suivre de manière automatique le mouvement d’objets passifs avec des tailles variables. Nous avons utilisé ce système pour étudier l’effet de l’actine cytoplasmique sur le transport à longue portée. Nous avons ainsi validé l’existence d’un mécanisme de centrage non spécifique de gros objets pendant la prophase. Nous avons aussi démontré que ce mécanisme de centrage reste présent pendant le reste de la méiose, en même temps que la migration du fuseau vers le cortex de l’ovocyte. / Cell division is a key element of the development of an embryo throughout all his life. During cell division, the genetic material (chromosomes) is distributed between the two daughter cells. This distribution is achieved by the spindle and a misbehavior in the formation of this structure can be critical. The cytoskeleton polymers are playing a predominant role in cell division. Despite important progresses in the understanding of their role in cell division process, numerous questions still have to be answered and technical progresses to study these phenomena are still needed. In this PhD work, we studied the role of cytoplasmic F-actin self-organization in two model systems: Xenopus egg extracts and mouse oocytes. Using an interdisciplinary approach, we developed new experimental and analytical tools to study the role of cytoplasmic F-actin during cell division. By encapsulating Xenopus actin-intact egg extracts in droplets, we are able to mimic cellular environment. We use this system to study interactions between F-actin and microtubules. In a first project, we showed that F-actin self-organization can trigger signaling pathways. By engineering two properties of the microfilament self-organization and using Ran dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. In a second project, we showed that the dynamics of cytoplasmic F-actin can induce constraints on the microtubule organization and dynamics in aster and spindle structures. Our results suggest that the dynamic properties of cytoplasmic F-actin meshwork are of a primary importance for the proper assembly of microtubule structures.In the mouse oocyte, we set-up a method to automatically track the movement of passive objects with tunable size. We used this system to examine the effect of cytoplasmic F-actin on long-range transport. We thus validated the existence of a non-specific mechanism for large objects centering during Prophase. We also demonstrated that this centering mechanism is still present during the rest of meiosis, coexisting with the spindle migration toward the cortex.
2

Meiotic spindle assembly on chromatin micropatterns : investigating the roles of Augmin, Kinesin-10 and Kinesin-4 / Assemblage de fuseaux meiotiques sur micro-motifs de chromatine : étude du role de l’Augmin, de la Kinesine-10 et la Kinesine-4

Pugieux, Céline 12 March 2014 (has links)
La division cellulaire est essentielle pour la survie de chaque être vivant. Au cours de ce processus, les chromosomes de la cellule en division sont transmis aux deux cellules filles. La répartition des chromosomes est orchestrée par une structure cellulaire transitoire appelée fuseau mitotique (ou fuseau méiotique dans les cellules reproductrices). Le fuseau est composé de microtubules, de nombreuses protéines et de moteurs moléculaires, qui interagissent de manière complexe et précise aboutissant à l’organisation d’une structure bipolaire dynamique. Comme certains mécanismes moléculaires restent mal compris, nous avons choisi d'aborder la question de l'assemblage du fuseau méiotique dans des extraits d'oeufs de grenouille. Xenopus laevis est un organisme modèle car il est proche, d’un aspect phylogénétique, de l'homme, et il est particulièrement adapté à l’étude de la division cellulaire. Nous avons également utilisé une méthode in vitro (appelée spindle array ou puce à fuseaux) qui a été développée au sein du groupe de recherche auparavant, et qui offre certains avantages par rapport aux approches existantes. Une puce à fuseaux est composée de billes recouvertes de chromatine immobilisées selon des micro-motifs géométriques obtenus selon une technique d’impression par microcontact. L'assemblage des fuseaux méiotiques a été visualisé par microscopie confocale à fluorescence. Grâce à ces outils, nous avons, lors d’un premier projet, abordé le rôle de l’Augmin dans l'assemblage des fuseaux. L’Augmin est un complexe protéique récemment identifié grâce à son hypothétique rôle dans la nucléation de microtubules à partir de microtubules existants. Après déplétion de l’Augmin, nous avons constaté que la nucléation des microtubules était réduite et que les fuseaux avaient une morphologie anormale. De plus, ces derniers qui étaient essentiellement multipolaires sont progressivement devenus bipolaires grâce à une voie de nucléation des microtubules, découverte lors de notre étude, émanant des pôles acentrosomaux et qui est indépendante de l’Augmin. Nos résultats révèlent que l’Augmin est essentiel pour l’assemblage et la bipolarité du fuseau acentrosomal. Au cours d’un second projet, nous avons étudié les fonctions des chromokinésines kinésine-4 (Xklp1) et kinésine-10 (Xkid) dans l'assemblage des fuseaux et leurs mouvements. Xkid participe à la force d’éjection polaire nécessaire à la congression des chromosomes alors que Xklp1 contribue principalement à la régulation de la dynamique des microtubules. En étudiant l'assemblage de fuseaux dans des extraits après déplétion de Xkid, Xklp1 ou les deux, nous avons démontré que Xkid limite la dynamique des mouvements longitudinaux des fuseaux, contribue à la mise en place de la bipolarité et régule la longueur des fuseaux. Nous avons également quantifié la cinétique de nucléation des microtubules et confirmé le rôle de Xklp1 dans la régulation de la dynamique des microtubules. L’ensemble de nos travaux contribuent à une meilleure compréhension des mécanismes d’assemblage du fuseau méiotique et confirme la pertinence de notre méthode pour l'étude de sa morphogenèse. / Cell division is essential for the survival of every living organism. During this process, the chromosomes of the dividing cell are transmitted to the two daughter cells. The partition of the chromosomes is orchestrated by a transient sub-cellular structure called the mitotic spindle (or meiotic spindle in gamete cells). The spindle is composed of microtubules, numerous proteins and molecular motors, which interact in an intricate and yet precise manner leading to a highly dynamic and complexstructure. As some molecular mechanisms remain elusive, we have chosen to address the question of meiotic spindle assembly in Xenopus egg extracts. Xenopus laevis is a model system that is evolutionary close to human, and suitable for cell division studies. We have combined this with an in vitro assay - spindle array - which we developed prior to this work, and which provides advantages over existing approaches. A spindle array is composed of chromatin-coated beads that are immobilized according to geometrical patterns obtained by microcontact printing. The assembly of meiotic spindles wasvisualized by time-lapse fluorescence confocal microscopy. Using these tools, we first addressed the role of augmin in the assembly of meiotic spindles. Augmin is a recently identified protein complex that has been hypothesized to induce microtubule nucleation from the side of preexisting microtubules. By depleting augmin, we found that microtubule nucleationwas reduced and that spindles were morphologically impaired. Spindles were predominantly multipolar but finally reached bipolarity as a result of a newly uncovered augmin-independent microtubule nucleation pathway from acentrosomal poles. Our results thus reveal that augmin is essential for the proper establishment of the microtubule scaffolding and the bipolarity ofacentrosomal spindles. Secondly, we investigated the functions of the chromokinesins kinesin-4 (Xklp1) and kinesin-10 (Xkid)in acentrosomal spindle architecture and motions. Xkid plays a major role in the polar ejection forces leading chromosome movements during congression while the main function of XKlp1 is to regulate microtubule dynamics. We studied spindle assembly in depleted extracts and we report that Xkid limits the dynamics of spindle longitudinal movements, contributes to spindle bipolarity and affects spindle length while XKlp1 controls the spindle microtubule mass. Altogether these findings contribute to a better understanding of meiotic spindle assembly and confirm the pertinence of our method to study spindle morphogenesis.

Page generated in 0.0493 seconds