181 |
Delayed Developmental Loss of Regeneration in Xenopus laevis tadpolesHe, Justin 05 October 2021 (has links)
No description available.
|
182 |
The Control of Maternal Messenger RNA Expression During the Early Development of <em>Xenopus laevis</em>: A ThesisMcGrew, Laura Lynn 01 May 1990 (has links)
Maternally inherited poly(A)+ RNAs are important for directing early development in many animal species. This thesis investigates the regulation of maternal mRNA in the South African clawed frog, Xenopus laevis. The first portion of this thesis examines an unusual class of maternal RNA, interspersed poly(A)+ RNA, which is composed of co-linear repeat and single copy sequences. A cDNA clone, called pXR, contains the repeat portion of an interspersed RNA that hybridizes to several different oocyte transcripts of diverse size that persist until the neurula stage. DNA sequence analysis of the cDNA and hybrid selection of the oocyte transcripts followed by in vitro translation show that molecules of this repeat family are not translatable. This data, combined with the developmental profile of XR containing RNAs, indicate that members of this repeat family are not likely to be maternal messenger RNAs.
The second part of this thesis investigates the expression of a class of maternal mRNAs that are regulated by cytoplasmic polyadenylation during progesterone induced oocyte maturation. One particular mRNA G10, is stored as a polyadenylated RNA in the cytoplasm of stage VI oocytes until maturation when the process of poly(A) elongation stimulates its translation. Injection of mutant and wild-type mRNAs, synthesized in vitro, revealed that two sequence elements, UUUUUUAUAAAG and AAUAAA, were both necessary and sufficient for polyadenylation and polysomal recruitment of G10. Maturation promoting factor and cyclin as well as progesterone can induce polyadenylation but in each case protein synthesis is required. Extracts from oocytes and unfertilized eggs were employed to identify factors that may be responsible for maturation-specific polyadenylation. An 82 kd protein that binds to the UUUUUUAUAAAG in egg, but not oocyte extracts, was identified by UV crosslinking. This data suggests that p82 is a good candidate for a developmentally regulated protein that controls the expression of maternal messenger RNAs in early Xenopus development.
|
183 |
Leveraging the African clawed frog (Xenopus laevis) for Understanding Stage- and Sex-Specific Toxicokinetics and Effects of PFASMeredith Norris Scherer (15361759) 26 April 2023 (has links)
<p>Per- and polyfluoroalkyl substances (PFAS) are a group of emerging global contaminants used in a variety of industrial processes and consumer products, such as personal care products and fast-food wrappers. However, due to their carbon-fluorine bonds, these chemicals resist degradation and persist in the environment. PFAS toxicity is driven by a compound’s functional group and chain length with perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide dimer acid (GenX) being of focal concern due to their toxicity to wildlife and presence in the environment. Despite growing concern regarding these contaminants, inadequate attention has been given to evaluating what organismal characteristics influence uptake and depuration of these chemicals, such as life stage and sex. <em>Xenopus laevis</em> tadpoles are a useful model to assess the influence of sex on PFAS kinetics since they have a life history that includes a gill to lung transition. Previous studies have shown that air-breathing organisms depurate PFAS more slowly than water-breathing organisms, but this relationship has never been directly tested. Sex has been shown to be an important factor in the depuration of PFOA for rats, with female rats depurating PFOA in four hours while males depurate in four days. The early portion of bioaccumulation curves are also understudied even though tadpoles accumulate PFAS rapidly, reaching steady state within 48 hours of exposure. <em>Xenopus laevis</em> are used to study multiple endpoints for endocrine disrupting chemicals including PFAS. Despite this, toxicity reference values (TRVs) have not been described for the uptake and elimination of PFAS using <em>X. laevis</em>. To address these gaps in knowledge, I first developed TRVs for <em>X. laevis</em> tadpoles exposed to PFOA throughout metamorphosis and evaluated the influence of sex on phenotypic endpoints. Results showed a no observed effect concentration (NOEC) of 11.1 ppm for body mass at day 14 and no effect of sex on apical endpoints. Next, I described the early bioaccumulation of four PFAS with differing structure (chain lengths and functional groups). PFOS was the only chemical to bioaccumulate with a log bioconcentration factor (BCF) at 10 and 1,000 ppm of 1.33 and 1.18, respectively. PFHxS, PFOA, and GenX had BCFs less than 0. Finally, I examined the impact of life-stage and sex on <em>X. laevis</em> tadpole and juvenile depuration rates. Larval tadpoles depurated four times faster than juveniles, indicating a significant effect of life stage on elimination rates. Sex had no influence on elimination rates. These are the first studies conducted evaluating the significance of life stage and sex in toxicokinetics of PFAS in amphibians.</p>
|
184 |
Xenopus ADAM13 and ADAM19 are Important for Proper Convergence and Extension of the NotochordNeuner, Russell David 01 February 2011 (has links)
Gastrulation is a fundamental process that reorganizes the primary germ layers to shape the internal and external features of an early embryo. Morphogenetic movements underlying this process can be classified into a variety of different types of cellular movements. I will focus on investigating in this thesis two types of cell movements in the dorsal mesoderm; mediolateral cell intercalation and convergence and extension. During gastrulation, mesoderm cells send protrusions to gain traction on neighboring cells and the surrounding extracellular matrix; a process called mediolateral cell intercalation. Mesoderm cells use this type of cell movement to converge and extend the dorsal mesoderm tissue during gastrulation; a process called convergence and extension. These morphogenetic movements are essential to form the early embryo and are important for later development. There are a number of different proteins involved in regulating the morphogenetic movements during gastrulation. The Planar Cell Polarity Signaling Pathway helps establish individual cell polarity and is activated in dorsal mesoderm cells undergoing convergence and extension. In addition, dorsal mesoderm cells migrate by using integrin receptors and the surrounding extracellular matrix to correctly position the mesoderm in the embryo. I will focus my efforts on analyzing the function of ADAM proteins during Xenopus laevis gastrulation. The ADAM family of metalloproteases is important for a variety of biological processes. ADAM proteins function as ectodomain sheddases by cleaving membrane bound proteins involved in signal transduction, cell-cell adhesion, and cell-extracellular matrix adhesion. I will focus on investigating the roles of two ADAM family members; ADAM13 and ADAM19 during gastrulation. Both ADAM13 and ADAM19 are expressed in the dorsal mesoderm during gastrulation. Throughout early embryonic development, ADAM13 is expressed in the somitic mesoderm and cranial neural crest cells. ADAM19 is expressed in dorsal, neural and mesodermal derived structures such as the neural tube, notochord, the somitic mesoderm, and cranial neural crest cells. Since ADAM13 and ADAM19 are expressed in similar tissues, I investigated if both proteins functionally interacted. I show that a loss of ADAM13 protein in the embryo reduces the level of ADAM19 protein by 50%. In the opposite experiment, a loss of ADAM19 protein in the embryo reduces the level of ADAM13 protein by 50%. This suggests that both ADAM13 and ADAM19 are required to maintain proper protein levels in the embryo. This might be explained through their physical interaction in a cell. The ADAM19 Proform binds to the ADAM13 Proform in cultured cells. Through domain analysis, I show that ADAM19 binds specifically to the cysteine-rich domain of ADAM13. When co-overexpressed in a cell, the level of Mature ADAM13 (compared to the Proform) is reduced suggesting a complex form of regulation. I propose a few hypothetical models that discuss how ADAM19 may function as a chaperone to stabilize and regulate the further processing of ADAM13 protein. Some of the unpublished work discussed in this thesis focuses on the roles of ADAM13 and ADAM19 in the dorsal mesoderm during gastrulation. Specific emphasis is made on investigating the axial mesoderm during notochord formation. I show that ADAM19 affects gene expression important for the A-P polarity of the notochord while ADAM13 does not. The changes in gene expression can be partially rescued by the EGF ligand Neuregulin1β, a known substrate for ADAM19 in the mouse. ADAM13 and ADAM19 are important for convergence and extension movements of the axial mesoderm during gastrulation. Specifically, a loss of ADAM13 or ADAM19 causes a delay in mediolateral cell intercalation resulting in a significantly wider notochord compared to control embryos. These defects occur without affecting dishevelled intracellular localization or the activation of the PCP signaling pathway. However, a loss of ADAM13 or ADAM19 reduces dorsal mesoderm cell spreading on a fibronectin substrate through α5β1 integrin. To conclude, the work presented in this thesis focuses on the similarities and differences of ADAM13 and ADAM19 in the early embryo. Although ADAM13 and ADAM19 are required for normal morphogenetic movements during gastrulation, my data suggests they have different functions. ADAM13 appears to function in regulating cell movements while ADAM19 appears to function in regulating cell signaling. I propose a few hypothetical models that discuss how each ADAM metalloprotease may function in the dorsal mesoderm and contribute to convergence and extension movements during gastrulation.>
|
185 |
Mathematical Modeling of Gas Transport Across Cell Membrane: Forward andInverse ProblemsBocchinfuso, Alberto 26 May 2023 (has links)
No description available.
|
186 |
Functional Analysis of the Sex Related Gene dmrt1 in Xenopus / Mechanistic investigation of the sex related gene dmrt1 in African clawed frogs (Xenopus) evidences both neofunctionalization and subfunctionalizationKukoly, Lindsey 11 1900 (has links)
Sex determination is a key developmental process in several species regulated by sexrelated
transcription factors. In many species a gene called doublesex and mab-3 related
transcription factor 1 (dmrt1), plays an important role in sexual differentiation. I used African
clawed frogs (Xenopus) to examine function of dmrt1 in two species: a diploid species, X.
tropicalis, and an allotetraploid species, X. laevis. In both species, dmrt1 is an autosomal gene;
Xenopus tropicalis has one copy of dmrt1 and X. laevis has two homeologous copies that by
definition are derived from whole genome duplication: dmrt1.L and dmrt1.S in X. laevis. We
generated knockouts of each of these genes to further examine their function in sexual
differentiation. Histological examination showed testicular dysgenesis in X. tropicalis dmrt1 and
X. laevis dmrt1.L null males whereas dmrt1.S null males presented no obvious difference in
sperm density compared to wildtype males. X. tropicalis dmrt1 and X. laevis dmrt1.L null
females were found to completely lack reproductive organs and are infertile whereas dmrt1.S
null females appeared unaffected. The contrasting results between dmrt1.L and dmrt1.S in X.
laevis provides evidence of both neofunctionalization and subfunctionalization following gene
duplication and suggest that gene duplication is a major contributor to evolutionary change.
Additional investigation of the transcriptome of these frogs and the role of dmrt1 in the
secondary sex characteristic vocalization provides further evidence of the role of dmrt1 in
development. Comprehensively, this investigation provides further knowledge of the role of
dmrt1 and homeologs of this gene in sexual differentiation and introduces a novel aspect of this
gene in female development. Future efforts are focused on generating double knockouts for
dmrt1.L and dmrt1.S, further examining the role of dmrt1.S in somatic cell function and
developing additional mutant lines in other Xenopus for comparative analysis. / Thesis / Master of Science (MSc) / In many species sexual differentiation is a crucial developmental event. Surprisingly,
however, the systems orchestrating sexual differentiation are highly variable among species. The
doublesex and mab-3 related transcription factor 1 (dmrt1) gene plays a role in sexual
differentiation in many groups, but its specific roles in this process are incompletely
characterized and potentially diverse. We used genetic engineering in two species of African
clawed frog (Xenopus) to disable function of dmrt1 in order to explore effects on gonadal
development and the development of secondary sex characteristics. We found that dmrt1 is
required for normal ovary or testis development in both Xenopus species, and that functional
divergence occurred following duplication of dmrt1 by whole genome duplication. Taken
together, these findings identify previously uncharacterized roles of dmrt1 in Xenopus and
provide evidence of dynamic functional evolution of this important gene.
|
187 |
The role and regulation of FoxI1e in <i>Xenopus ectoderm</i> formationMir, Adnan 08 October 2007 (has links)
No description available.
|
188 |
Identifizierung und funktionelle Charakterisierung neuer RNA-Transportfaktoren in der Xenopus laevis Oozyte / Identification and functional characterization of novel RNA transport factors in Xenopus laevis oocytesLöber, Jana 29 April 2008 (has links)
No description available.
|
189 |
Étude fonctionnelle du cotransporteur Na+/glucose (hSGLT1) : courant de fuite, vitesse de cotransport et modélisation cinétiqueLongpré, Jean-Philippe 05 1900 (has links)
Les résultats présentés dans cette thèse précisent certains aspects de la fonction du cotransporteur Na+/glucose (SGLT1), une protéine transmembranaire qui utilise le gradient électrochimique favorable des ions Na+ afin d’accumuler le glucose à l’intérieur des cellules épithéliales de l’intestin grêle et du rein.
Nous avons tout d’abord utilisé l’électrophysiologie à deux microélectrodes sur des ovocytes de xénope afin d’identifier les ions qui constituaient le courant de fuite de SGLT1, un courant mesuré en absence de glucose qui est découplé de la stoechiométrie stricte de 2 Na+/1 glucose caractérisant le cotransport. Nos résultats ont démontré que des cations comme le Li+, le K+ et le Cs+, qui n’interagissent que faiblement avec les sites de liaison de SGLT1 et ne permettent pas les conformations engendrées par la liaison du Na+, pouvaient néanmoins générer un courant de fuite d’amplitude comparable à celui mesuré en présence de Na+. Ceci suggère que le courant de fuite traverse SGLT1 en utilisant une voie de perméation différente de celle définie par les changements de conformation propres au cotransport Na+/glucose, possiblement similaire à celle empruntée par la perméabilité à l’eau passive. Dans un deuxième temps, nous avons cherché à estimer la vitesse des cycles de cotransport de SGLT1 à l’aide de la technique de la trappe ionique, selon laquelle le large bout d’une électrode sélective (~100 μm) est pressé contre la membrane plasmique d’un ovocyte et circonscrit ainsi un petit volume de solution extracellulaire que l’on nomme la trappe. Les variations de concentration ionique se produisant dans la trappe en conséquence de l’activité de SGLT1 nous ont permis de déduire que le cotransport Na+/glucose s’effectuait à un rythme d’environ 13 s-1 lorsque le potentiel membranaire était fixé à -155 mV. Suite à cela, nous nous sommes intéressés au développement d’un modèle cinétique de SGLT1. En se servant de l’algorithme du recuit simulé, nous avons construit un schéma cinétique à 7 états reproduisant de façon précise les courants du cotransporteur
en fonction du Na+ et du glucose extracellulaire. Notre modèle prédit qu’en présence d’une concentration saturante de glucose, la réorientation dans la membrane de SGLT1 suivant le relâchement intracellulaire de ses substrats est l’étape qui limite la vitesse de cotransport. / The results presented in this thesis clarify certain functional aspects of the Na+/glucose cotransporter (SGLT1), a membrane protein which uses the downhill electrochemical gradient of Na+ ions to drive the accumulation of glucose in epithelial cells of the small intestine and the kidney.
We first used two microelectrodes electrophysiology on Xenopus oocytes to indentify the ionic species mediating the leak current of SGLT1, a current measured in the absence of glucose that is uncoupled from the strict 2 Na+/1 glucose stoichiometry
characterising cotransport. Our results showed that cations such as Li+, K+ and Cs+, which interact weakly with SGLT1 binding sites and are unable to generate the conformational changes that are triggered by Na+ binding, were however able to generate leak currents similar in amplitude to the one measured in the presence of Na+. This suggests that the leak current permeating through SGLT1 does so using a pathway that differs from the conformational changes associated with Na+/glucose cotransport. Moreover, it was found that the cationic leak and the passive water permeability could share a common pathway. We then sought to estimate the turnover rate of SGLT1 using the ion-trap technique, where a large tip ion-selective electrode (~100 μm) is pushed against the oocyte plasma membrane, thus enclosing a small volume of extracellular solution referred to as the trap. The variations in ionic concentration occurring in the trap as a consequence of SGLT1 activity made it possible to assess that the turnover rate of Na+/glucose cotransport was 13 s-1 when the membrane potential was clamped to -155 mV. As a last project, we focused our interest on the development of a kinetic model for SGLT1. Taking advantage of the simulated annealing algorithm, we constructed a 7-state kinetic scheme whose predictions accurately reproduced the currents of the cotransporter as a function of extracellular Na+ and glucose. According to our model, the rate limiting step of cotransport under a saturating glucose concentration is the reorientation of the empty carrier that follows the intracellular
release of substrates.
|
190 |
Neurotoxinas de anêmonas do mar como ferramentas para o estudo da fisiologia de canais voltagem - dependentes de potássio / Sea anemones neurotoxins as tools to study the physiology of voltage-gated potassium channelsOrts, Diego Jose Belato y 25 April 2013 (has links)
A peçonha das anêmonas do mar é uma fonte de compostos bioativos, incluindo toxinas peptídicas que são ferramentas para o estudo da estrutura e função dos canais voltagem dependentes de K+ (KV). Neste trabalho, quatro neurotoxinas foram purificadas da peçonha das anêmonas do mar Actinia bermudenesis e Bunodosoma caissarum. AbeTx1 e BcsTx4 possuem um motivo estrutural semelhante à das \"kappa-toxinas\" e análises funcionais e estruturais permitiram concluir que são os primeiros membros de um novo (tipo 5) de neurotoxinas de anêmonas do mar que atuam em canais KV. Por sua vez, a similaridade estrutural das toxinas BcsTx 1 e BcsTx2 nos permitiu inferir que estas são membros do já descrito tipo 1 (subtipo 1b) de neurotoxinas de anêmona que também atuam em canais KV. A caracterização funcional foi realizada utilizando-se diferentes subtipos de canais KV, expressos em ovócitos de Xenopus laevis e as medidas eletrofisiológicas foram feitas empregando-se a técnica de \"voltage-clamp\" com dois microelétrodos. AbeTx1, BcsTx1 e BcsTx2 (3 μM) apresentaram uma seletividade de atividade para os subtipos de KV1.1-KV1.3, KV1.6 e Shaker IR, ao passo que a BcsTx4 (3 μM) é somente capaz de bloquear a corrente dos subtipos de KV1.1, KV1.2 e KV1.6. Os mecanismos de ação envolvidos na seletividade da atividade e na potência com que estas se ligam aos seus alvos biológicos foram discutidos com base nos resultados obtidos e análises fisiológicas permitiram propor que estas toxinas atuam como \"armas\" para defesa contra predadores e/ou para captura de presas / The sea anemones venom is a rich source of bioactive compounds, including peptide toxins which are tools for studying the structure and function of voltage-dependent channels K+ (KV). In this work, four neurotoxins were purified from the venom of the sea anemones Actinia bermudenesis and Bunodosoma caissarum. AbeTx1 and BcsTx4 have a structural motif similar to that of kappa-toxins and functional and structural analysis showed that they are the first members of a new type (type 5) of sea anemone neurotoxins acting on KV channels. Moreover, the structural analysis of BcsTx1 and BcsTx2 toxins allowed us to conclude that they are members of the previously described type 1 (subtype 1b) of sea anemone neurotoxins. Functional characterization was performed by means of a wide electrophysiological screening on different KV channels using oocytes of Xenopus laevis and electrophysiological measurements were performed employing the voltage-clamp technique. AbeTx1, BcsTx1 and BcsTx2 (μM) showed a selective activity for KV1.1-KV1.3, KV1.6 and Shaker IR, while BcsTx4 (3 μM) only blocks KV1.1, KV1.2 and KV1.6. The mechanisms involved in potency and selectivity were discussed based on the results obtained and physiological analyses have provided new insights on the role of these toxins in the physiology of the sea anemones
|
Page generated in 0.0504 seconds