• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Xyloglucan-active enzymes : properties, structures and applications

Baumann, Martin J. January 2007 (has links)
Cellulosabaserade material är världens rikligast förekommande förnyelsebara råvara. Växters cellväggar är naturliga kompositmaterial där den kristallina cellulosan är inbäddad i en väv av hemicellulosa, strukturproteiner och lignin. Xyloglukaner är en viktig hemicellulosagrupp som omger och korslänkar den kristallina cellulosan i cellväggarna. I denna avhandling undersöks undersöks sambanden mellan struktur och funktion hos olika xyloglukan-aktiva enzymer. En modell för effektiv enzymatisk omvandling av biomassa ges av cellulosomen hos den anaeroba prokaryota organismen Clostridium thermocellum. Cellulosomen är ett proteinkomplex med hög molmassa och flera olika enzymaktiviteter, bl.a. det inverterande xyloglukan-endohydrolaset CtXGH74A. Proteinstrukturen för CtXGH74A har lösts i komplex med xyloglukanoligosackarider, som stabliliserar vissa loopar/slingor som är oordnade i apostrukturen. Ytterligare detaljerade kinetiska och produktananalyser har genomförts för att entydigt visa att CtXGH74A är ett endoxyloglukanas vars slutliga nedbrytningsprodukt är Glc4-baserade xyloglukanoligosackarider. Som jämförelse innehåller glykosidhydrolasfamilj 16 (GH16) såväl hydrolytiska endoxyloglukanaser som xyloglukantransglykosylaser (XETs) från växter. För att utreda vad som bestämmer förhållandet mellan transglykosylering och hydrolys i xyloglukanaktiva enzymer från familj GH 16 jämfördes struktur och kinetik hos ett strikt transglykosylas, PttXET16-34 från hybridasp, med ett nära besläktat hydrolytiskt enzym, NXG1 från krasse. I NXG1 identifierades en viktig förlängningsloop, som vid trunkering gav ett muterat enzym med högre transglykosyleringshastighet och minskad hydrolytisk aktivitet. Kinetikstudierna genomfördes med hjälp av nyutvecklade känsliga provmetoder med väldefinerade XGO:er och ett antal kromogena XGO-arylglykosider. En detaljerad förståelse av enzymologin inom GH16 möjliggjorde utvecklingen av en ny kemoenzymatisk metod för biomimetisk fiberytmodifiering med hjälp av PttXET16-34s translgykosyleringsaktivitet. Aminoalditolderivat av xyloglukanoligosackarider användes som nyckelintermediärer för att introducera ny kemisk funktionalitet hos xyloglukan, såsom kromoforer, reaktiva grupper, proteinligander och initiatorer för polymeriseringsreaktioner. Tekniken innebär ett nytt och mångsidigt verktyg för fiberytmodifiering. / Zellulosehaltige Materialien sind die häufigsten erneuerbaren Rohmaterialien auf der Welt. Pflanzenzellwände sind natürliche Kompositmaterialien, sie enthalten kristalline Zellulose, die in einer Matrix aus Hemizellulosen, Proteinen und Lignin eingebettet sind. Xyloglukane sind eine wichtige Gruppe der Hemizellulosen, sie ummanteln und verbinden Zellulose in der pflanzlichen Zellwand. In dieser Abhandlung werden Strukturen von drei Xyloglukanaktiven Enzymen in Beziehung zu ihrer Funktion untersucht. Ein Paradigma für effizienter Nutzung von Biomasse ist das Cellulosom des anaerob lebenden Bakteriums Clostridium thermocellum. Das Cellulosom ist ein hochmolekularer Komplex von Proteinen mit vielen verschiedenen Aktivitäten, darunter ist auch die invertierende Xyloglukan Endohydrolase CtXGH74A. Die Proteinstruktur von CtXGH74A wurde im Komplex mit Xyloglukanoligosacchariden (XGO) gelöst, welche ungeordnete Loops der apo-Struktur stabilisierten. Durch weitere detaillierte Analyse der Kinetik und Reaktionsprodukte konnte schlüssig gezeigt werden, daß CtXGH74A eine Endoglukanase ist, die Glc4-basierte XGO produziert. Im Vergleich dazu enthält die retentierende Glykosidhydrolasefamilie 16 (GH16) sowohl hydrolytische Endoxyloglukanasen als auch Transglykosidasen von Pflanzen. Um zu erklären welche Faktoren das Verhältnis zwischen Transglykosidase und Hydrolase Aktivität bei GH16 Xyloglukanaktiven Enzymen bestimmen wurde eine reine Transglykosidase PttXET16-34 von Hybridaspen mit einem nah verwandten hydrolytischen Enzym NXG1 von Kapuzinerkresse strukturell und kinetisch verglichen. Als Schlüsselstelle wurde eine Verlängerung eines Loops in NXG1 identifiziert, Verkürzung des Loops führte zu einer Mutante mit erhöhter Transglykosylierungsrate bei verminderter hydrolytischer Aktivität. Kinetische Studien wurden erleichtert durch neu entwickelte hochempfindliche Methoden für Aktivitätsmessung, die auf XGO oder chromogene Aryl-XGO als definierte Substrate zurückgreifen. Detailliertes Verständnis von GH16 Enzymologie hat den Weg für die Entwicklung für eine neuartige Methode für biomimetische Oberflächenmodifikation von Zellulosefibern geebnet, dafür wurde die transglykosylierende Aktivität von PttXET16-34 angewendet. Aminoalditol-derivate von XGO wurden als wichtigste Zwischenprodukte angewendet, um neue chemische Funktionalitäten in Xyloglukan einzuführen, darunter waren Chromophore, reaktive Gruppen, Proteinliganden und Initiatoren für Polymerisationsreaktionen. Die modifizierten Xyloglukane wurden an eine Reihe von verschiedenen Zellulosematerialien gebunden und veränderten die Oberflächeneigenschaften dramatisch. Diese Methode ist ein neues wertvolles Werkzeug für Oberflächenmodifikation von Zellulosen. / Cellulosic materials are the most abundant renewable resource in the world; plant cell walls are natural composite materials containing crystalline cellulose embedded in a matrix of hemicelluloses, structural proteins, and lignin. Xyloglucans are an important group of hemicelluloses, which coat and cross-link crystalline cellulose in the plant cell wall. In this thesis, structure-function relationships of a range of xyloglucan-active enzymes were examined. A paradigm for efficient enzymatic biomass utilization is the cellulosome of the anaerobic bacterium Clostridium thermocellum. The cellulosome is a high molecular weight complex of proteins with diverse enzyme activities, including the inverting xyloglucan endo-hydrolase CtXGH74A. The protein structure of CtXGH74A was solved in complex with xyloglucan oligosaccharides (XGOs) which stabilized disordered loops of the apo-structure. Further detailed kinetic and product analyses were used to conclusively demonstrate that CtXGH74A is an endo-xyloglucase that produces Glc4-based XGOs as limit digestion products. In comparison, the retaining glycoside hydrolase family 16 (GH16) contains hydrolytic endo-xyloglucanases as well as xyloglucan transglycosylases (XETs) from plants. To elucidate the determinants of the transglycosylase/hydrolysis ratio in GH16 xyloglucan-active enzymes, a strict transglycosylase, PttXET16-34 from hybrid aspen, was compared structurally and kinetically with the closely related hydrolytic enzyme NXG1 from nasturtium. A key loop extension was identified in NXG1, truncation of which yielded a mutant enzyme that exhibited an increased transglycosylase rate and reduced hydrolytic activity. Kinetic studies were facilitated by the development of new, sensitive assays using well-defined XGOs and a series of chromogenic XGO aryl-glycosides. A detailed understanding of GH16 xyloglucan enzymology has paved the way for the development of a novel chemo-enzymatic approach for biomimetic fiber surface modification, in which the transglycosylating activity of PttXET16-34 was employed. Aminoalditol derivates of XGOs were used as key intermediates to incorporate novel chemical functionality into xyloglucan, including chromophores, reactive groups, protein ligands, and initiators for polymerization reactions. The resulting modified xyloglucans were subsequently bound to a range of cellulose materials to radically alter surface properties. As such, the technology provides a novel, versatile toolkit for fiber surface modification. / QC 20100624
2

In vitro and in vivo approaches in the characterization of XTH gene products

Kaewthai, Nomchit January 2011 (has links)
ABSTRACT The xyloglucan endo-transglycosylase/hydrolase (XTH) genes are found in all vascular and some nonvascular plants. The XTH genes encode proteins which comprise a subfamily of glycoside hydrolase (GH) family 16 in the Carbohydrate-Active enZYmes (CAZY) classification. The XTH gene products are believed to play intrinsic role in cell wall modification during growth and development throughout the lifetime of the plant. In the present investigation, biochemical and reverse genetic approaches were used to better understand the functions of individual members of the XTH gene family of two important plants: the model organism Arabidopsis thaliana and the grain crop barley (Hordeum vulgare). A phylogenetic tree of the xyloglucan-active enzymes of GH16 has previously been constructed, where enzymes with similar activities have been shown to cluster together. Several members of phylogenetic Group I/II and III-B, predicted to exhibit xyloglucan endo-transglycosylase activity (EC 2.4.1.207) and members of Group III-A, predicted to exhibit xyloglucan endo-hydrolase activity (EC 3.2.1.151), were included to analyze the functional diversity of XTH gene products. A heterologous expression system using the yeast Pichia pastoris was found to be effective for recombinant protein production with a success rate of ca. 50%. XTH gene products were obtained in soluble and active forms for subsequent biochemical characterization. In order to be able to screen larger numbers of protein producing clones, a fast and easy method is required to identify clones expressing active protein in high enough amounts. Thus, a miniaturized XET/XEH assay for high-throughput analysis was developed, which was able to identify activities with good precision and with a reduced time and materials consumption and a reduced work load. Enzyme kinetic analysis indicated that the XET or XEH activity of all XTH gene products characterized in the present study corresponded to predictions based on the previously revised phylogenetic clustering. To gain insight into the biological function of the predominant XEHs AtXTH31 and AtXTH32, which are highly expressed in rapidly developing tissues, a reverse genetic approach was employed using T-DNA insertion lines of the A. thaliana Columbia ecotype. Genotypic and phenotypic characterization, together with in situ assays of XET and XEH activities, in single- and double-knock-out mutants indicated that these Group III-A enzymes are active in expanding tissues of the A. thaliana roots and hypocotyl.  Although suppression of in muro XEH activity was clearly observed in the double-knock-out, no significant growth phenotype was observed, with the exception that radicle emergence appeared to be faster than in the wild type plants. Keywords: Arabidopis thaliana, Hordeum vulgare, plant cell wall, xyloglucan, glycoside hydrolase family 16, xyloglucan endo-transglycosylase/hydrolase gene family, xyloglucan endo-transglycosylase, xyloglucan endo-hydrolase, heterologous protein expression, Pichia pastoris, T-DNA insertion, in situ XET/XEH assay, high-throughput screening / QC 20110114

Page generated in 0.0794 seconds