Spelling suggestions: "subject:"zeolite.""
351 |
Acid Gas Removal by Superhigh Silica ZSM-5: Adsorption Isotherms of Hydrogen Sulfide, Carbon Dioxide, Methane, and NitrogenRahmani, M., Mokhtarani, B., Mafi, M., Rahmanian, Nejat 05 May 2022 (has links)
Yes / The adsorption of acid gas, including hydrogen sulfide and carbon dioxide, by superhigh silica ZSM-5 was investigated. Equilibrium adsorption isotherms of high-purity hydrogen sulfide and carbon dioxide were measured experimentally using this new sorbent. In addition, methane and nitrogen adsorption isotherms on this MFI-type zeolite were also measured as representative of other natural gas components. To enhance the reliability of the results, the adsorption pressure has been selected up to 20 bar at three different temperatures. Superhigh silica ZSM-5 for the adsorption of hydrogen sulfide shows an impressive result of 3.04 mmol·g–1 at 12 bar and 283 K. This value was 2.69 mmol·g–1 for carbon dioxide at 21 bar and 283 K. The adsorption capacity of H2S on the ZSM-5 is the highest, and N2 is the lowest; the order of the adsorption capacities of components is H2S > CO2 > CH4 > N2. The adsorption heat of different adsorbates is calculated: 13.7 and 29.5 kJ·mol–1 for H2S and CO2, respectively. Physical adsorption has occurred on high-silica ZSM-5, especially for hydrogen sulfide, and this is a great advantage. By increasing the temperature, the adsorption capacity of components on the ZSM-5 decreases, but due to differences in the adsorption heat of the adsorbate, the ideal selectivity for hydrogen sulfide increases. There is a challenge in the choice of the best condition for H2S removal, as, by increasing the temperature, the adsorption capacity of hydrogen sulfide reduces, but the selectivity of the hydrogen sulfide increases as compared to other gases. This phenomenon is not true for the selectivity of other components.
|
352 |
Decomposition of n- and sec-Butyl Acetate on Synthetic Zeolites and Silica-AluminaImai, Tamotsu 05 1900 (has links)
<p> A kinetic and mechanistic study on catalytic decomposition of n- and sec-butyl acetate was carried out. The catalysts were silica-alumina and synthetic zeolites including type A, X, Y and mordenite. The reactions were performed in the temperature region of 140° to 290°C at
atmospheric pressure using a fixed-bed flow reactor.</p> <p> The esters decomposed to acetic acid and n-butenes. The isomerization of butenes occurred consecutively. The mechanism of ester decomposition was different from that of pyrolysis. The catalytic activity was effected by acidity, cations and pore size. The Langmuir-Hinshelwood rate equation corresponding to the surface reaction on dual-sites correlated data satisfactorily. Strong adsorption of acetic acid, crystal collapse and the blocking of pores with organic deposit caused aging of catalysts.</p> / Thesis / Doctor of Philosophy (PhD)
|
353 |
IN-SITU GROWTH OF POROUS ALUMINO-SILICATES AND FABRICATION OF NANO-POROUS MEMBRANESKodumuri, Pradeep 22 June 2009 (has links)
No description available.
|
354 |
A PSA Process for an Oxygen ConcentratorMoran, Aaron A. 19 August 2014 (has links)
No description available.
|
355 |
EFFECT OF MANGANESE AND ZEOLITE COMPOSITION ON ZEOLITE-SUPPORTED NICKEL CATALYSTS FOR DRY REFORMING OF METHANENajfach, Aaron Jacob 03 August 2017 (has links)
No description available.
|
356 |
Synthesis of hierarchical TS-1 zeolites from a hydrolysis resistant polymer and their excellent catalytic performance in bulky molecules oxidationXing, J., Yuan, D., Wu, Y., Xu, Y., Liu, Z. 05 March 2020 (has links)
The traditional TS-1 zeolite is a typical microporous material, the diffusion of bulky molecules in TS-1
is greatly affected.[1] Besides, because of the highly hydrolyzable titanium source, the preparation of
TS-1 requires complex synthesis conditions. Moreover, the difference in hydrolysis rate between the
silicon source and titanium source tends to increase the difficulty of titanium insertion into the
framework, and it is easy to generate extraframework Ti species during the synthesis. We propose a
method of synthesizing hierarchical TS-1 from highly hydrolysis-resistant polymers containing titanium
and silicon (Fig. 1a). This method completely solves the above problems and can conveniently and
stably synthesize high-quality TS-1 free of extraframework Ti species. The TS-1 zeolite synthesized
from the polymers exhibits excellent reaction performance in the oxidation of n-hexane and cyclohexene.
|
357 |
SYNTHESIS METHODS TO MANIPULATE SPATIAL DISTRIBUTION OF ALUMINUM IN ZEOLITE CRYSTALLITES AND CONSEQUENCES FOR ALKENE OLIGOMERIZATION CATALYSISRicem M Diaz Arroyo (18626998) 30 May 2024 (has links)
<p dir="ltr">Zeolites are microporous, crystalline aluminosilicates widely used in catalysis and separation. The substitution of Si<sup>4+</sup> with Al<sup>3+</sup> ([AlO<sub>4/2</sub>]<sup>-</sup>) creates a charge imbalance that can be compensated by a metal cation or complex (M<sup>n+</sup>) or a Brønsted acid proton (H<sup>+</sup>) within microporous voids and at external surfaces. Brønsted acid sites in aluminosilicates of diverse topologies have similar acid strength, but the diffusion of reactants and products can vary depending on the micropore size, tortuosity, and connectivity. The coupled effects of H<sup>+</sup>-site reactivity and diffusional constraints imposed by the inorganic zeolitic framework can be assessed by the diffusion parameter, which depends on the bulk proton density ([H<sup>+</sup>]) and the diffusion pathlength (L), derived from the Thiele modulus expression that relates reaction and diffusion rates within porous catalysts. This motivates synthetic approaches to control zeolite properties that influence diffusion and reactivity such as crystallite size and proton density. Prior synthetic methods have tried to minimize the diffusional constraints by decreasing the diffusion pathlength (L) by synthesizing zeolite crystallites at the nanometer scale or by increasing the effective diffusivity (D<sub>e</sub>) by synthesizing hierarchical materials. However, these synthetic approaches may simultaneously influence multiple zeolite properties, such as the spatial distribution of acid sites throughout crystallites or at extracrystalline surfaces, convoluting the influence of these properties on the rates, selectivity, and deactivation of acid-catalyzed reactions.</p><p dir="ltr">Two types of spatial distribution of acid sites could be present within a zeolite. The first is the fraction at unconfined extracrystalline surfaces, and this property is often convoluted with the effect of crystallite size. Assuming acid sites are evenly distributed through the crystallite, as the crystallite size increases, the fraction of external acid sites decreases because the surface area-to-volume decreases. The second type of spatial distribution of acid sites is referred to as “zoning”—a concentration gradient of active sites from the external surface to its core, or vice versa. This type of spatial distribution of acid sites is challenging to quantify accurately. “Zoning” effects may also occur inadvertently during zeolite synthesize using conventional methods. In this work, we synthesize zeolitic materials (i.e., MFI) with controlled spatial distribution of acid sites independently of crystallite size and H<sup>+</sup>-site density to study their effects on propene oligomerization catalysis. A core@shell synthesis approach was used to passivate external MFI zeolite surfaces by an inert shell (Si-MFI) of short thickness relative to the size of the core crystallite. Although other passivation treatments can cause pore blockage or narrowing, transient sorption measurement showed no additional diffusional limitations were introduced by the growth of the Si-MFI shell. Propene dimerization rates (per H<sup>+</sup>, 503 K, 16 – 620 kPa C<sub>3</sub>H<sub>6</sub>) and transient behavior upon pressure step-changes persist reveal the influence of intrazeolite diffusional constraints on the Al-MFI core due to heavier oligomer products that accumulate inside micropores. On the contrary, dimerization rates did not reach a pseudo-steady-state on Al-MFI@Si-MFI and required high temperature caused by the formation of surface carbonaceous deposits in the absence of acid sites that otherwise assist in the cracking and desorption of coke precursor species. Thus, the passivation of the external surface imposes a transport limitation at the surface due to a carbonaceous layer that forms during the reaction, restricting the diffusion of products out of crystallites and shifting the selectivity towards a lighter product composition.</p><p dir="ltr">An inverted core@shell (Si-MFI@Al-MFI) material was also synthesized to investigate the effect of the spatial distribution of acid sites on the diffusion parameter, where the acid sites are preferentially located at the external surface and the core is inert (i.e. Si-MFI). The spatial distribution of acid sites was varied by growing an Al-MFI shell on a siliceous core and maintaining a similar bulk crystallite size. Mesitylene benzylation was used to quantify the fraction of external acid sites. Differences in measured propene dimerization rates (per H<sup>+</sup>) and product selectivity can be rationalized considering the thickness of the Al-rich shell in the core@shell material to an Al-MFI sample of similar crystallite size, evincing the dominant influence of the diffusion parameter on propene oligomerization catalytic behavior. Overall, this study demonstrated how zeolite synthetic methods can be used to isolate the effects of spatial distributions of Al from crystallite size and H<sup>+</sup>-site density and provide guidance for zeolite catalyst design efforts to control structural properties that influence reactions driven by coupled kinetic-transport phenomena.</p>
|
358 |
Rhodium-zeolite hydroformylation of propyleneRode, Edward James January 1985 (has links)
The purpose of this research was to characterize the rhodium exchanged NaX and NaY zeolites as propylene hydroformylation catalysts. Catalytic activity was measured in a differential bed reactor. Flow in situ infrared spectroscopy was used to probe the coordination chemistry of the zeolite modified rhodium carbonyls.
The catalytic activity of rhodium zeolites at atmospheric pressure and between 100-150ºC was measured. The rate of n-butyraldehyde production was approximately 5x10⁻³ moles/g-Rh hr at 150°C. Regioselectivity was dependent upon pretreatment. Precarbonylation with carbon monoxide, drying with air, and heating with N₂ prior to hydroformylation conditions produced a straight to branched isomer ratio (n/i) of 1.9-2.3. Partial reduction with 10% H₂ in N₂ at 127°C lowered n/i to 1.3. Hydrogenation to propane was 3-10 times faster than the hydroformylation rate at 150°C.
Catalytic activity was sensitive to cation exchange conditions. Rhodium form, pH, temperature, and salt concentration altered catalyst behavior. Only RhCl₃•3H₂O preparations on NaY zeolite produced above 80ºC, a pH above 4, and a salt concentration of 0.1N NaCl were required in order to produce an active hydroformylation catalyst. Ammine complexes did not activate under any circumstances.
It was found that the degree of hydration controlled the formation of rhodium carbonyls. On NaY, the hydrated rhodium zeolite reacted with CO at 120ºC to form Rh₆(CO)₁₆. By drying the zeolite in air at 190ºC, two rhodium dicarbonyls, Rh(CO)₂(O<sub>z</sub>)₂-NaY and Rh(CO)₂(O<sub>z</sub>)(H₂O)-NaY, were formed. The rhodium carbonyls were reacted with n-hexyl diphenylphosphine to determine rhodium locations. Rh(CO)₂(O<sub>z</sub>)₂-NaY was located at the surface while the other two species were located within the zeolite cages. One dicarbonyl species, Rh(CO)₂(O<sub>z</sub>)₂-NaX, was observed on NaX. It was determined by reactions with phosphines that this species resides in the zeolite cages.
Reaction intermediates identified by FTIR under hydroformylation conditions suggested that the heterogeneous catalyst proceeds through a mechanism similar to that occurring in solution. Heterogeneous reaction orders also agreed with those reported for homogeneous hydroformylations.
Addition of dimethylphenylphosphine (DMP) to the rhodium zeolites significantly increased regioselectivity. Rates were slightly less than those from the unmodified rhodium carbonyls. However, the phosphine modified rhodium zeolites deactivated within 16 hours. Continuous exposure to DMP decreased the rate of deactivation. / Ph. D.
|
359 |
Selective catalytic reduction of nitrogen oxides with ammonia over microporous zeolite catalystsVENNESTROM, PETER NICOLAI RAVNBORG 14 October 2014 (has links)
With increasing legislative demands to remove nitrogen oxides (NOx) from automotive diesel exhaust, new catalyst systems are investigated and intensely studied in industry as well in academia. The most prevailing catalytic method of choice is the selective catalytic reduction (SCR) where non-toxic urea is used as a reductant for practical reasons. Usually urea is stored in a separate tank and once injected into the exhaust system it hydrolyses into the more aggressive reductant NH3 and CO2.
4 NH3 + 4 NO + O2 -> 4 N2 + 6 H2O (NH3-SCR reaction)
In regions where vanadium is not banned cost effective V2O5/WO3/TiO2 NH3-SCR catalyst systems can be used. Vanadium based are well understood, but they do however not provide stability above ca. 550 °C for longer periods of time. In exhaust treatment systems where the temperature is either high or where high temperature excursions are experienced from e.g. regeneration of particulate filters, zeolite based catalysts are therefore today the most promising candidates as high-temperature stable and non-toxic catalysts for the NH3-SCR reaction.
Among the most promising candidates are the Cu- and Fe-based zeolites. Usually Fe based zeolites show good performance in the temperature range 250-500 °C and reasonable stability, whereas Cu-based zeolites show good low-temperature activity in the 180-400 °C range. The presence of copper does however also lead to a lower stability of the catalyst material. Since the low-temperature activity is of paramount importance it is necessary to improve this behavior. Therefore the purpose of this project is to investigate:
- The deactivation mechanism of copper based zeolites
- The influence of the zeolite framework on stability and activity
These investigations should mostly be carried out on model systems such as Cu-ZSM-5 and Cu-IM-5.
Recently it was found that zeolite materials with the CHA-type structure show increased hydrothermal stability, most likely originating from the small 8-MR window openings in the structure. Part of the project should therefore also include investigations on this type and other similar structures, and therefore entail:
- Synthesis, in-depth characterization and catalytic testing of Cu-SSZ-13 and Cu-SAPO-34 (both structures having the CHA-type framework)
- Theoretical DFT calculations on relevant parameters found by the in-depth investigation of the afore-mentioned materials
- Synthesis and testing of similar materials with 8-MR windows to elucidate the influence of the zeolite sub-structure i.e. if different ring sizes in the structure influences the catalytic performance
Relevant characterization techniques include, besides conventional methods, in situ methods such as: high resolution (transmission) electron microscopy, infrared (and raman) spectroscopy together with X-ray absorption spectroscopy. These are all techniques that will complement each other to produce invaluable results.
Zeolites are today applied in many and diverse applications both within automotive and environmental catalysis, but also within the petrochemical and renewable chemistry. The findings of this project are therefore also believed to contribute to a more comprehensive understanding of this class of materials, relevant to many areas of heterogeneous catalysis, and therefore have the potential, to create research and business with very high impact. / Vennestrom, PNR. (2014). Selective catalytic reduction of nitrogen oxides with ammonia over microporous zeolite catalysts [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/43217
|
360 |
Porous Solids for Adsorption and Separation of Gas and Vapor MixturesPérez Botella, Eduardo 22 November 2022 (has links)
[ES] En esta tesis se han estudiado las propiedades de diferentes adsorbentes zeolíticos y su uso en separaciones de mezclas fluidas de interés industrial. La selección de los materiales se ha realizado poniendo especial énfasis en los adsorbentes zeolíticos de poro pequeño de baja polaridad, más concretamente, zeolitas pura sílice, aluminofosfatos y silicoaluminofosfatos. Las separaciones que se han considerado están relacionadas principalmente con la producción de energía, procesado del gas natural y del biogás, purificación de hidrógeno, mejora del índice de octano de la gasolina y purificación de biobutanol.
Las propiedades de adsorción se han estudiado mediante medidas de isotermas de adsorción de un solo componente, medidas de cinéticas de adsorción de un solo componente y experimentos de adsorción dinámica multicomponente, es decir, experimentos de curvas de ruptura. Las isotermas de adsorción se analizaron en cuanto a forma y capacidad máxima de adsorción y se utilizaron para calcular los calores isostéricos de adsorción, las selectividades termodinámicas y las capacidades de trabajo ideales en procesos hipotéticos de adsorción por oscilación. Las medidas de cinéticas de adsorción han permitido comparar el comportamiento difusional de diferentes adsorbatos en diferentes materiales y calcular las constantes de difusión temporales, que a su vez fueron utilizadas para calcular selectividades cinéticas ideales / factores de separación. Los experimentos de curvas de ruptura se utilizaron para ver cómo se comportan los materiales en condiciones cercanas al caso industrial, para calcular las selectividades reales de mezcla y los parámetros de operación relevantes de procesos de adsorción, es decir, productividad, recuperación y pureza.
Las propiedades físicas de los materiales estudiados, como la estructura, el orden cristalino, la conectividad atómica, el tamaño y la forma de las partículas y las propiedades texturales, han sido evaluadas y empleadas para explicar los resultados obtenidos en los experimentos de adsorción.
En el capítulo 1, se presenta una introducción general sobre las zeolitas, su síntesis, propiedades y aplicaciones, junto con una introducción acerca de los fenómenos de adsorción y las separaciones industriales de interés para esta tesis. En el capítulo 2 se presentan los objetivos de este trabajo de tesis. En el capítulo 3 se presenta la síntesis de los adsorbentes utilizados, junto con los equipos de caracterización y adsorción y los procedimientos de análisis de datos de adsorción. En el capítulo 4, se estudia la adsorción de gases ligeros en Si-RWR con especial énfasis en la separación de isótopos de hidrógeno y la purificación del hidrógeno presente en la corriente de salida de un proceso de reformado de metano con vapor. En el capítulo 5 estudio las propiedades de adsorción de \ce{CO2} en aluminofosfatos, silicoaluminofosfatos y zeolitas de estructuras LTA, CHA y AFI, y más específicamente los calores isostéricos de adsorción. En el capítulo 6, estudio el efecto del tamaño de poro y la topología de poro en la separación de \ce{CO2} de \ce{CH4} mediante isotermas de compuestos puros y experimentos de ruptura de la mezcla. En el capítulo 7, se estudian las propiedades de adsorción de hidrocarburos de las fracciones C5-C7 en Si-STW con la atención puesta en la separación de hidrocarburos dirramificados de monorramificados y lineales. Se establece una comparación con Si-MFI. En el capítulo 8 se estudia una serie de zeolitas puramente silíceas para la separación de una mezcla de vapores de 1-butanol, acetona, etanol y agua proveniente de un proceso de fermentación. Se han realizado experimentos de adsorción de los compuestos puros, así como de mezclas de ellos mediante curvas de ruptura. Se presta atención a la recuperación de 1-butanol durante el proceso de adsorción, estudiá / [CA] En aquesta tesi, s'han estudiat les propietats de diferents adsorbents zeolítics i el seu ús en separacions de mescles de fluids d'interès industrial. La selecció dels materials s'ha dut a terme posant un èmfasi especial en els adsorbents zeolítics de porus petit de baixa polaritat, més concretament, les zeolites pura sílice, aluminofosfats i silicoaluminofosfats. Les separacions que s'han considerat estan relacionades principalment amb la producció d'energia, el processament de gas natural i de biogàs, la purificació d'hidrogen, la millora del nombre d'octans de la gasolina i la purificació de biobutanol.
Les propietats d'adsorció s'han estudiat mitjançant isotermes d'adsorció d'un component, cinètiques d'adsorció d'un component i experiments d'adsorció dinàmica multicomponent, és a dir, experiments de corbes de ruptura. Les isotermes d'adsorció es van analitzar en funció de la seva forma i capacitat màxima d'adsorció i es van utilitzar per calcular les calors isostèriques d'adsorció, les selectivitats termodinàmiques i les capacitats de treball ideals en els hipotètics processos d'adsorció per oscil·lació . Les mesures de cinètiques d'adsorció han permès comparar el comportament difusional de diferents adsorbats en diferents materials i calcular constants temporals de difusió, que, al seu torn, s'han utilitzat per al càlcul de selectivitats cinètiques ideals/factors de separació. Els experiments de corbes de ruptura es van utilitzar per, veure com funcionen els materials en condicions properes al cas industrial i per calcular per a cada mescla les selectivitats i els paràmetres d'operació rellevants per a processos d'adsorció, és a dir, la productivitat, la recuperació i la puresa.
Les propietats físiques dels materials estudiats, com ara l'estructura, l'ordre cristal·lí, la connectivitat dels àtoms, la mida i la forma de les partícules i les propietats texturals s'han avaluat i s'han utilitzat per explicar els resultats obtinguts en els experiments d'adsorció.
En el capítol 1, es proporciona una introducció general sobre les zeolites, la seva síntesi, propietats i aplicacions, juntament amb una introducció referent a fenòmens d'adsorció i separacions industrials d'interès en aquesta tesi. En el capítol 2 es presenten els objectius d'aquest treball de tesi. En el capítol 3 es presenta la síntesi dels adsorbents utilitzats, juntament amb els equips de caracterització i adsorció i els procediments d'anàlisi de dades d'adsorció. En el capítol 4, s'estudia l'adsorció de gasos lleugers a Si-RWR amb especial atenció a la separació d'isòtops d'hidrogen i la purificació de l'hidrogen present en el corrent de sortida d'un procés de reformat de metà amb vapor. En el capítol 5 estudio les propietats d'adsorció de \ce{CO2} en aluminofosfats, silicoaluminofosfats i zeolites d'estructures LTA, CHA i AFI i, més concretament, les seus calors d'adsorció isostèriques. En el capítol 6, estudio l'efecte de la mida i la topologia de porus sobre la separació de \ce{CO2} de \ce{CH4} mitjançant isotermes de components purs i experiments de ruptura de la mescla. En el capítol 7, s'estudien les propietats d'adsorció d'hidrocarburs de les fraccions C5-C7 en Si-STW amb especial atenció a la separació d'hidrocarburs lineals i monorramificats de dirramificats. S'estableix una comparació amb Si-MFI. En el capítol 8 s'estudia una sèrie de zeolites purament silícies per a la separació d'una mescla de vapors de 1-butanol, acetona, etanol i aigua provinent d'un procés de fermentació. S'han realitzat experiments d'adsorció dels compostos purs, així com de mescles d'ells mitjançant corbes de ruptura. Es para atenció a la recuperació de 1-butanol durant el procés d'adsorció, estudiant-se la recuperació del producte desitjat enfront de la puresa d'aquest. / [EN] In this thesis, the properties of different zeolitic adsorbents and their use in separations of fluid mixtures of industrial interest have been studied. The selection of the materials has been carried out putting a special emphasis on low polarity small pore zeolitic adsorbents, more specifically, pure silica zeolites, aluminophosphates and silicoaluminophosphates. The separations that have been considered are related mostly to energy production, natural and biogas upgrading, purification of hydrogen, gasoline octane number improvement and purification of biobutanol.
The adsorption properties of the zeolitic materials have been studied by single component adsorption isotherm measurements, single component adsorption kinetics measurements and multicomponent dynamic adsorption experiments, i.e. breakthrough experiments. The adsorption isotherms were analysed in terms of their shape, the maximum adsorption capacity and used to calculate isosteric heats of adsorption, ideal thermodynamic selectivities and ideal working capacities in hypothetical swing adsorption processes. The adsorption kinetics measurements have allowed to compare the diffusional behavior of different adsorbates in different materials and to calculate diffusional time constants, which were, in turn, used for calculating ideal kinetic selectivities/separation factors. The breakthrough experiments were used to ultimately see how materials perform at conditions close to the industrial case and to calculate for each material mixture selectivities and relevant swing adsorption process operation parameters, i.e. productivity, recovery and purity.
The physical properties of the studied materials, such as structure, crystalline order, atom connectivity, particle size and shape and textural properties have been critically evaluated and used to explain the results obtained in the adsorption studies.
In chapter 1, a general introduction on zeolites, their synthesis, properties and applications is provided, together with an introduction on adsorption phenomena and on the industrial separations of interest to this thesis. In chapter 2 the objectives of this thesis work are presented. In chapter 3 the synthesis of the adsorbents used is presented, together with the characterization and adsorption equipment and the adsorption data analysis procedures. In chapter 4, the adsorption of light gases on pure silica RWR zeolite is studied with special focus on the separation of hydrogen isotopes and the purification of hydrogen from steam methane reformery off-gas. In chapter 5 I study the adsorption properties of CO2 on aluminophosphates, silicoaluminophosphates and zeolites of LTA, CHA and AFI structures, and more specifically their isosteric heats of adsorption. In chapter 6, I study the effect of pore size and pore topology on the separation of CO2 from CH4 by means of pure component isotherms and breakthrough experiments of the mixture. In chapter 7, the adsorption properties of C5-C7 hydrocarbons on pure silica STW zeolite are studied with special focus on the separation of dibranched from monobranched and linear hydrocarbons. A comparison with pure silica MFI zeolite (silicalite-1) is established. In chapter 8 a set of pure silica zeolites is studied as adsorbents for the vapor phase separation of 1-butanol from acetone, ethanol and water, typical components of the ABE fermentation broth. Pure component isotherms were measured and breakthrough experiments were carried out using multicomponent mixtures. Special focus is put on the recovery of 1-butanol from the desorption curve, and the dependence of purity with recovery is studied. / I would like to thank the Spanish Ministry of Science, Innovation and Universities (MCIU) for my grant FPU15/01602, which has allowed me to carry out this thesis. I thank again the MCIU for paying my short stay in Brussels and for the funding provided through many different projects (RTI2018-101784-B-I00, Program Severo Ochoa SEV-2016-0683; and previous ones), which covered the costs of my research activities and allowed for my assistance to numerous international conferences which completed my training as a scientist. I thank the Instituto de Tecnología Química, the Universitat Politècnica de València (UPV) and the Consejo Superior de Investigaciones Científicas for providing the infrastructure needed for carrying out successful research. / Pérez Botella, E. (2021). Porous Solids for Adsorption and Separation of Gas and Vapor Mixtures [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/178978
|
Page generated in 0.0496 seconds