Spelling suggestions: "subject:"zero valent ion.""
11 |
Treatment of persistent organic pollutants in wastewater with combined advanced oxidationBadmus, Kassim Olasunkanmi January 2019 (has links)
Philosophiae Doctor - PhD / Persistent organic pollutants (POPs) are very tenacious wastewater contaminants with negative
impact on the ecosystem. The two major sources of POPs are wastewater from textile industries
and pharmaceutical industries. They are known for their recalcitrance and circumvention of
nearly all the known wastewater treatment procedures. However, the wastewater treatment
methods which applied advanced oxidation processes (AOPs) are documented for their
successful remediation of POPs. AOPs are a group of water treatment technologies which is
centered on the generation of OH radicals for the purpose of oxidizing recalcitrant organic
contaminants content of wastewater to their inert end products. Circumvention of the reported
demerits of AOPs such as low degradation efficiency, generation of toxic intermediates, massive
sludge production, high energy expenditure and operational cost can be done through the
application of the combined AOPs in the wastewater treatment procedure. The resultant
mineralisation of the POPs content of wastewater is due to the synergistic effect of the OH
radicals produced in the combined AOPs.
Hydrodynamic cavitation is the application of the pressure variation in a liquid flowing through
the venturi or orifice plates. This results in generation, growth, implosion and subsequent
production of OH radicals in the liquid matrix. The generated OH radical in the jet loop
hydrodynamic cavitation was applied as a form of advanced oxidation process in combination
with hydrogen peroxide, iron (II) oxides or the synthesized green nano zero valent iron (gnZVI)
for the treatment of simulated textile and pharmaceutical wastewater.
|
12 |
Properties, functionality and potential applications of novel modified iron nanoparticles for the treatment of 2,4,6-trichlorophenolUnderwood, Laura Ann January 2018 (has links)
2,4,6-trichlorophenol (TCP) is a pervasive carcinogenic water contaminant found in a wide variety of water and waste systems and is a pertinent model compound of broader aromatic organics, specifically organo-halide pesticides. These compounds are persistent in the environment and show resilience to regular water and waste treatment protocols thus warranting the development and implementation of novel treatment materials for improved contaminant removal. Zero-valent iron (ZVI) has demonstrated the ability to remove or degrade a wide variety of inorganic and organic water contaminants, including chlorophenols, and has been widely applied for in-situ groundwater remediation where contamination is often localised in a low-oxygen environment. ZVI's broader applications in water treatment have remained mainly limited due to corrosion, particle dispersion, and confinement issues in deployment. This work, therefore, explored the development, functionality, and potential application of new modified nZVI materials (nZVI-Osorb) and assessed their potential to improve iron's intrinsic functionality while also gauging the material's viability for TCP remediation in water and waste systems. Materials produced in this thesis were prepared utilising three different embedment procedures (1-pot, multiple additions, oxygen-free). All embedment methods resulted in tightly bound composites featuring high surface areas (340.2-449.1 sq. m/g) with net iron composition ranging from 10% to 29.78% by mass. Electron imaging microscopy verified even dispersion of iron throughout the substrate. Composite materials did not exhibit a delayed rate of atmospheric corrosion over nZVI controls evincing an 18% nZVI0 loss per day until reaching a stabilised concentration (7%) after 48 hrs. nZVI-Osorb composites did produce more favourable iron oxide species which remain conducive to electron transfer from core Fe0 atom. After 50 days, a majority of nZVI in nZVI-Osorb had oxidised to maghemite (30%) and magnetite (26%) compared to control nZVI producing 19% and 12% respectively. Unreactive hematite accounted for 47% of the control and just 36% of the composite. While 1-pot embedment allowed the most substantial control over final iron composition, the oxygen-free method allowed the most reliable preservation of initial nZVI0 concentrations through restricted oxidation. Materials generated through oxygen-free embedment were utilised in the following water treatment trials with TCP. Parameters related to sorption and degradation mechanisms of TCP by nZVI-Osorb were tested in aerobic conditions, e.g. surface and potable water. nZVI-Osorb materials demonstrated high extraction capacity for TCP from aqueous solutions (Qe=1286.4 ± 13.5 mg TCP/g Osorb, Qe=1253 ± 106.7 mg TCP/g nZVI-Osorb, pH 5.1, 120mg/L TCP) and followed pseudo second order kinetics. In the broader class of chlorophenols, sorptive affinity mirrored partitioning values with highly substituted chlorophenols displaying the highest sorption capacities. Degradation of TCP by nZVI-Osorb or nZVI controls was not observed due to corrosive hindrance and inadequate reductive capacity, suggesting that materials may not be suitable for highly aerated surface and potable water treatment systems. Environmental conditions pertinent to sorption and degradation mechanisms were evaluated to improve understanding and robustness of functionality in low-oxygen applications, such as wastewater and anaerobic digesters, where nZVI-Osorb treatment is anticipated to be advantageous to TCP sorption and methane production. pH was found to influence sorption dramatically. Acidic solutions below 5 found sorption > 90%. This capacity was reduced to < 30% when pH was raised above TCP pKa value (6.23) to 7 and above. Further trials found a positive effect on TCP sorption (+7.55%) linked to net pH reduction (5.1 to 3.3) with the addition of secondary acids (volatile fatty acids: acetic, propionic, butyric, 3x 100mg/L) commonly found in anaerobic digester systems. Salinity did not affect TCP sorption. The removal of dissolved and atmospheric oxygen increased total sorption (40ppm-+1.94%, 100ppm- +7.93%, 200ppm- +0.89%, 400mg/L- +14.59%) through reduced iron corrosion and the production of favorable iron oxides, but did not facilitate contaminant degradation. Biodegradation mechanisms for TCP have broadly been established, and new research has supported the improved cometabolic degradation of recalcitrant contaminants like TCP and PCP in nZVI-dosed anaerobic digesters. Model anaerobic digester systems (3.9 g/L nZVI-Osorb, 25mg/L TCP, 240 mg/L acetic, 120mg/L propionic, 120mg/L butyric acid) containing bioreactor sludge (62.5%) were observed through standard water quality diagnostics (pH, ORP, COD, head pressure) for 14 days and suggested that nZVI-Osorb did not inhibit cellular processes. Increased electron activity from iron corrosion and hydrogen gas production, increased overall pH and decreased total ORP in these AD systems. TCP degradation by-products (DCP, CP) were detected in dilute concentrations (< 0.01 mg/L) with poor recovery by LC-MS/MS. Results suggest that nZVIOsorb may be well-suited additive for AD systems. This study contributes to knowledge of the properties, functionality, and treatment mechanisms of metal-sorbent composites with a model chlorinated aromatic water contaminant in aerobic and anaerobic environments. The work identifies favourable environmental and process conditions to apply these materials in larger scale applications, particularly, anaerobic digestion and provides support for the continued refinement and improvement of nZVI based remediation systems.
|
13 |
Plating of nano zero-valent iron (nZVI) on activated carbon : a fast delivery method of iron for source remediation?Busch, Jan, Meißner, Tobias, Potthoff, Annegret, Oswald, Sascha January 2011 (has links)
The use of nano zerovalent iron (nZVI) for environmental remediation is a promising new technique for in situ remediation. Due to its high surface area and high reactivity, nZVI is able to dechlorinate organic contaminants and render them harmless. Limited mobility, due to fast aggregation and sedimentation of nZVI, limits the capability for source and plume remediation. Carbo-Iron is a newly developed material consisting of activated carbon particles (d50 = 0,8 µm) that are plated with nZVI particles. These particles combine the mobility of activated carbon and the reactivity of nZVI. This paper presents the rst results of the transport experiments. / Der Einsatz von elementarem Nanoeisen ist eine vielversprechende Technik zur Sanierung von Altlastenschadensfällen. Aufgrund der hohen Oberäche und der hohen Reaktivität kannn ZVI chlororganische Schadstoffe dechlorieren und zu harmlosen Substanzen umwandeln. Der Einsatz von Nanoeisen zur Quellen- und Fahnensanierung wird jedoch durch mangelnde Mobilität im Boden im eingeschränkt. Carbo-Iron ist ein neu entwickeltes Material, das aus Aktivkohlepartikeln (d50 = 0,8 µm) und nZVI besteht. Diese Partikel kombinieren die Mobilit ät von Aktivkohle mit der Reaktivität von nZVI. Dieser Artikel beschreibt erste Ergebnisse von Transportuntersuchungen.
|
14 |
The Preparation of Nanoscale Bimetallic Particles and Its Application on In-Situ Soil/Groundwater RemediationHung, Chih-hsiung 28 August 2007 (has links)
The objective of this research was to evaluate the treatment efficiency of a nitrate-contaminated soil by combined technologies of the injection of palladized nanoiron slurry and electrokinetic remediation process. First, nanoiron was prepared by two synthesis processes based on the same chemical reduction principle yielding products of NZVI-A and NZVI-B, respectively. Then they were characterized by various methods. Micrographs of scanning electron microscopy have shown that a majority of these nanoparticles were in the range of 50-80 nm and 30-40 nm, respectively. Results of nitrogen gas adsorption-desorption show that NZVI-A and NZVI-B are mesorporous (ca. 30-40 Å) with BET surface areas of 128 m2/g and 77 m2/g, respectively. Results of X-ray diffractometry have shown that both types of nanoiron were poor in crystallinity. Results of zeta-potential measurements indicated that NZVI-A and NZVI-B had the same isoelectric point at pH 6.0. Although NZVI-A and NZVI-B were found to be superparamagnetic, their magnetization values were low.
Poly acrylic acid (PAA), an anionic dispersant, was employed for stabilizing various types of nanoiron. Then Palladium¡]ca. 1 wt% of iron¡^ was selected as catalysis to form palladized nanoiron¡]Pd/Fe¡^. Results have demonstrated that an addition of 1 vol. % of PAA during the nanoiron preparation process would result in a good stabilization of nanoiron and nanoscale Pd/Fe slurry.
Batch tests were carried out to investigate the effects of pH variation on degradation of nitrate aqueous solutions. Experimental results have indicated that palladized nanoiron outperformed nanoiron in treatment of nitrate in this study. Apparently, an employment of catalyst would enhance the treatment efficiency. Further, an exponential increase of the reaction rate was found for the systems at low pH.
The final stage of this study was to evaluate the treatment efficiency of combined technologies of the injection of palladized nanoiron¡]Pd/Fe¡^ slurry and electrokinetic remediation process in treating a nitrate-contaminated soil. Test conditions used were given as follows: (1) slurry injection to four different positions in the soil matrix; (2) electric potential gradient: 1 V/cm; (3) daily addition of 20 mL of palladized nanoiron (4 g/L) slurry to the injection position; and (4) reaction time: 6 days. Test results have shown that addition of palladized nanoiron slurry to the anode reservoir yielded the lowest residual nitrate concentration in soil. Namely, about 99.5% removal of nitrate from soil. On the other hand, the acidic condition of soil matrix around the anode reservoir would enhance the degradation of nitrate therein. Based on the above findings, the treatment method employed in this work was proven to be a novel and efficient one in treating nitrate contaminated soil.
|
15 |
Treatment of Water-borne Nutrients, Pathogens, and Pharmaceutical Compounds using Basic Oxygen Furnace SlagHussain, Syed January 2013 (has links)
Phosphorus (P) is one of the essential nutrients for living organisms; however, excess P in aquatic systems often causes environmental and ecological problems including eutrophication. Removal of P from domestic wastewater, industrial wastewater, and agricultural organic-waste systems is required to minimize loading of P to receiving water bodies. A variety of sorbents or filter materials have previously been evaluated for P removal, including natural materials, industrial byproducts, and synthetic products. Among these materials industrial byproducts were reported as most effective. However, only a few of these studies were based on field experiments. Pharmaceutically active compounds (PhACs) and acesulfame-K (an artificial sweetener) are emerging contaminants observed in wastewater. The removal of PhACs in conventional wastewater treatment systems has been studied; however, few studies on alternative treatment systems are available. Studies related to the removal of acesulfame-K are even more limited. This thesis was focused on evaluation of basic oxygen furnace slag (BOFS), a byproduct from the steel manufacturing industry, as a potential reactive media for P removal from surface water and wastewater. The removal of PhACs and acesulfame-K in wastewater treatment systems containing BOFS as a treatment component was also evaluated.
The effectiveness of BOFS for removing P from lake water was evaluated in a three year pilot-scale hypolimnetic withdrawal P treatment system at Lake Wilcox, Richmond Hill, Ontario. Phosphate concentrations of the hypolimnion water ranged from 0.3 to 0.5 mg L-1. About 83-100% P was removed during the experiment. The reactive mixtures were changed each year to improve the performance of the treatment system. Elevated pH (9-12) at the effluent of the treatment system was adjusted by sparging CO2(g) to near neutral pH. Elevated Al was removed through this pH adjustment. Elevated concentrations of V were removed in a column containing 5 wt% zero valent iron (ZVI) mixed with sand (0.5 m3) at the end of the BOFS based column. Removal of P in the BOFS based media is attributed to adsorption and co-precipitation at the outer layer of BOFS. Geochemical modeling results showed supersaturation with respect to hydroxyapatite, ß-tricalciumphosphate, aragonite, and calcite. Solid phase analyzes of the BOFS based reactive media collected after completion of the year 2 experiment (spent media) through combination of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and X-ray absorption near edge structure spectroscopy (XANES) support the presence of calcium phosphate minerals on the outer layer of the spent media.
A multistep wastewater treatment experiment was carried out in an indoor facility at the Center for Alternative Wastewater Treatment, Fleming College, Lindsay, Ontario, Canada. This experiment evaluated the removal of P, ammonia, cBOD5, COD, E. coli, total coliform, and trace metals in a series of treatment cells including a mixing cell, a vertical subsurface flow aerobic cell, a vertical subsurface flow P treatment cell containing BOFS, and a horizontal subsurface flow anaerobic cell. About 97-99% removal of P, NH3, cBOD5, E. coli, and total coliform; and ~72% removal of COD were achieved in the treatment system. The mixing cell and the aerated cell reduced the concentrations of P, ammonia, cBOD5, E. coli, and total coliform significantly and the P treatment cell provided additional treatment. However, the primary objective of the P treatment cell was to reduce P concentrations to the acceptable range according to the water quality guidelines. The P treatment cell had successfully fulfilled this objective. Elevated concentration of Al and V were also observed in the P treatment cell effluent. The concentration of Al decreased to below the guideline value of 0.075 mg L-1 after introducing a pH adjustment unit between the P treatment cell and the anaerobic cell. The concentration of V was decreased in the anaerobic cell effluent. However, the effluent concentration of V was much higher than the guideline value. Geochemical speciation modeling results showed supersaturation with respect to hydroxyapatite, ß-tricalciumphosphate, aragonite and calcite along the flow path. Accumulation of P on the outer layer of the spent BOFS media was identified by energy dispersive X-ray spectroscopy (EDX). Although X-ray photoelectron spectroscopy (XPS) can provide information to a depth of 5-7 nm from the outer layer of the spent media, both Ca and P were positively identified in some of the samples. Accumulation of P at the edge of the grains of the spent media was clearly identified on the element map of polished cross-sections and corresponding FTIR spectra. The phosphate and carbonate functional groups were identified by the distribution of different vibrational frequencies through FTIR spectroscopy. The presence of calcite and hydroxyapatite were inferred based on the wave numbers assigned for these minerals in the literature. Finally, X-ray absorption near edge structure spectroscopy (XANES) on the outer layer samples from the spent BOFS media and corresponding linear combination fitting analysis indicated the presence of ß-tricalciumphosphate, hydroxyapatite, and calcium phosphate dibasic.
Based on the observations from the indoor wastewater treatment experiment, a multistep demonstration-scale outdoor wastewater treatment experiment was conducted to investigate the applicability of the integration of the P treatment technology and engineered wetland technology at a relatively large scale prior to a full-scale field installation. The anaerobic treatment cell was not included in this outdoor system because this unit did not efficiently remove ammonia and metals (e.g. V) from the Cell 4 effluent in the indoor system. A 10 cm layer of zero valent iron was placed at the bottom part of the down flowing P treatment cell to address the elevated V in the P treatment cell effluent observed in the indoor system and also to treat PhACs in the effluent. More than 99% removal of P, E. coli, and total coliform; >82, >98, and >76% removal of ammonia, cBOD5, and COD were achieved in this treatment system. The effluent pH (10.88±1.47) was neutralized and the concentration of V remained < 0.006 mg L-1. The Al concentration was adjusted to <0.075 mg L-1 with the neutralization of pH. Geochemical speciation modeling results showed the supersaturation of hydroxyapatite, ß-tricalciumphosphate, octatricalciumphosphate, aragonite, and calcite. The FTIR and XANES spectra showed the presence of calcium phosphate minerals on the outer layer of the spent media.
Removal of the PhACs, including caffeine, ibuprofen, carbamazepine, naproxen, and sulfamethoxazole, and acesulfame-K was monitored in the demonstration-scale outdoor wastewater treatment system, which consisted of five different treatment cells including a horizontal subsurface flow constructed wetland, a vertical subsurface flow aerated cell, a vertical subsurface flow BOFS cell, and a pH neutralization unit. Significant removal of caffeine (>75%) and ibuprofen (50-75%), and moderate removal of sulfamethoxazole and naproxen (25-50%) were observed. The removal of carbamazepine was less effective with <25% removal observed. Acesulfame-K was also persistent along the flow path with <25% removal.
This study demonstrated that removal of P from lake water and wastewater in excess of 95% could be achieved using BOFS as a reactive media. Integration of this media into an engineered wetland system enhances its performance in removing nutrients and other wastewater contaminants.
|
16 |
Characterizing Chromium Isotope Fractionation During Reduction of Cr(VI): Batch and Column ExperimentsJamieson-Hanes, Julia Helen January 2012 (has links)
Chromium (VI) is a pervasive groundwater contaminant that poses a considerable threat to human health. Remediation techniques have focused on the reduction of the highly mobile Cr(VI) to the sparingly soluble, and less toxic, Cr(III) species. Traditionally, remediation performance has been evaluated through the measurement of Cr(VI) concentrations; however, this method is both costly and time-consuming, and provides little information regarding the mechanism of Cr(VI) removal. More recently, Cr isotope analysis has been proposed as a tool for tracking Cr(VI) migration in groundwater. Redox processes have been shown to produce significant Cr isotope fractionation, where enrichment in the ⁵³Cr/⁵²Cr ratio in the remaining Cr(VI) pool is indicative of a mass-transfer process. This thesis describes laboratory batch and column experiments that evaluate the Cr isotope fractionation associated with the reduction of Cr(VI) by various materials and under various conditions.
Laboratory batch experiments were conducted to characterize the isotope fractionation during Cr(VI) reduction by granular zero-valent iron (ZVI) and organic carbon (OC). A decrease in Cr(VI) concentrations was accompanied by an increase in δ⁵³Cr values for the ZVI experiments. Data were fitted to a Rayleigh-type curve, which produced a fractionation factor α = 0.9994, suggesting a sorption-dominated removal mechanism. Scanning electron microscopy (SEM), X-ray absorption near-edge structure (XANES) spectroscopy, and X-ray photoelectron spectroscopy (XPS) indicated the presence of Cr(III) on the solid material, suggesting that reduction of Cr(VI) occurred. A series of batch experiments determined that reaction rate, experimental design, and pre-treatment of the ZVI had little to no effect on the Cr isotope fractionation. The interpretation of isotope results for the organic carbon experiments was complicated by the presence of both Cr(VI) and Cr(III) co-existing in solution, suggesting that further testing is required.
A laboratory column experiment was conducted to evaluate isotopic fractionation of Cr during Cr(VI) reduction by OC under saturated flow conditions. Although decreasing dissolved Cr(VI) concentrations also were accompanied by an increase in δ⁵³Cr values, the isotope ratio values did not fit a Rayleigh-type fractionation curve. Instead, the data followed a linear regression equation yielding α = 0.9979. Solid-phase analysis indicated the presence of Cr(III) on the surface of the OC. Both the results of the solid-phase Cr and isotope analyses suggest a combination of Cr(VI) reduction mechanisms, including reduction in solution, and sorption prior to reduction. The linear characteristic of the δ⁵³Cr data may reflect the contribution of transport on Cr isotope fractionation.
|
17 |
Study of the effect of Permeable Reactive Barriers (PRB) on the electrokinetic remediation of Arsenic contaminated soilChiang, Tzu-hsing 26 August 2005 (has links)
This research was aimed to investigate the enhancement of electrokinetic (EK) remediation arsenate-contaminated soil by permeable reaction barrier (PRB). All experiments, which experimental parameters included the position, materials, and quantity of PRB, processing fluid types, potential gradients, and treatment time, were conducted in two types of EK systems. One was Pyrex glass cylindrical cells with dimension of 4.2 cm (£r) ¡Ñ 12 cm (L) and the other was a small pilot-scale modulus with dimension of 36cm (L) ¡Ñ18cm (W) ¡Ñ18cm cm (H). The PRBs were composed of four kinds of reaction materials, which included commercial zero valent iron (Fe(0)C), manufactured zero valent iron (Fe(0)M), commercial hydrous ferric oxide (FeOOHC), and manufactured hydrous ferric oxide (FeOOHM), mixed with ottawa sand in a ratio of 1:2,respectively, and installed in the anode, middle, and cathode side of the EK systems.
For 5-day EK cylindrical cell tests, the results showed that the PRB installation would result in a lower electroosmosis permeability (Ke) and a higher removal efficiency of arsenate. The arsenate removal efficiency of EK system with PRB was in the range of 43.89-70.25%, which was 1.5~2.6 times greater than that without PRB, and the value of Ke was in the range of 4.30-12.61¡Ñ10-6 cm2/V-s. The soil pH after EK/PRB treatment was much closer to natural and more arsenate was collected in the anode reservoir. Moreover, the remediation performance of FeOOHC as PRB materials was much better than other materials.
For EK pilot-scale modulus tests, it was shown that the removal efficiency of arsenate was effectively enhanced as improved experimental parameters and, however, led to increase the treatment cost. In EK modulus without PRB, the removal efficiency of arsenate, elctroosmosis permeability, and energy consumption were 27.76%, 3.30-5.39¡Ñ10-6 cm2/V-s, and 1724.81 kWh/m3, respectively. Furthermore, the treatment cost was NT 9583/m3. As increasing treatment time, graphite electrode, potential gradient, and quantity of PRB materials, the removal efficiency of arsenate increased to as high as 45.11-71.22% and the treatment cost also increased up to NT 24,800-57,730/m3.
As investigated the binding form of arsenate with soil after EK/PRB treatment, it was found that the arsenate ¡Vsoil binding forms of Fe-Mn oxide bound, organically bound, and residual in the soil section behind the PRB were much easier transformed to the forms of exchangeable and carbonate bound. The transformation rate reached as high as 72.5% and it increased with treatment time. However, the Fe-Mn oxide bound was still the main binding form, 61.6-81.6%, in the soil section prior to the PRB. The removal mechanism of arsenate contaminated soil remediation was dominated by electromigration, electrolysis, and electroosmosis in EK system without PRB. And, in EK/PRB system, the removal of arsenate from soil was mainly resulted from adsorption rather than redox reaction by PRB.
To sum up, the PRB can effectively enhance the electrokinetic remediation of arsenate contaminated soil by choosing the right PRB materials and operation parameters.
|
18 |
Enhanced TCE anaerobic biodegradation with nano zero-valent ironLiang, Tun-Chieh 20 August 2008 (has links)
The main objective of this study was to evaluate the feasibility of using nanoscale zero-valent iron (nZVI) as the source of hydrogen to enhance in situ anaerobic biodegradation of trichloroethylene (TCE). In the first part of this study, microcosms were constructed to evaluate the effects of different controlling factors [e.g., different redox conditions (aerobic and anaerobic conditions), different microorganisms (in situ microorganisms, activated sludge, and anaerobic sludge), and different sources of substrates and electron donors (phenol, cane molasses, hydrogen, and nZVI)] on TCE biodegradation. In the second part of this study, batch
experiments were conducted to evaluate the feasibility of hydrogen production by nZVI and bimetallic particles. Results from the microcosm study indicate that in-situ microorganisms were capable of degrading TCE under aerobic and anaerobic conditions. Results also show that TCE removal was more effective by activated sludge and anaerobic sludge. Aerobic biodegradation of TCE was
enhanced by the addition of phenol and cane molasses. Under anaerobic conditions, TCE removal could be improved when cane molasses and hydrogen were supplied. In addition, anaerobic TCE degradation was more effective with the presence of hydrogen. Results of microcosms conducted with the addition of nZVI reveal that TCE was degraded
completely in both live and autoclaved microcosms. This indicates that chemical reductive dechlorination seemed to dominate the removal of TCE in microcosms. Therefore, further studies with higher TCE concentrations or lower nZVI doses need to be conducted to determine the effects of the produced hydrogen on TCE biodegradation.
Results from the hydrogen production experiments indicate that efficiency of hydrogen production by nZVI ranged from 30% to 76%. Higher dose of nZVI addition resulted in higher amount of hydrogen
production. The total amounts of hydrogen production were correlated with the doses of nZVI. In addition, rates and efficiency of hydrogen production by bimetallic particles were better than those of nZVI. Results of the batch experiments reveal that nZVI and bimetallic particles had good efficiency on hydrogen production. This indicates that nZVI and bimetallic particles have high potential to be used as hydrogen producers.
In this study, a simple system consisted of only water and nZVI or bimetallic particles was applied to produce hydrogen. Although TCE in microcosms with nZVI addition was totally consumed by nZVI, results of
microcosms with hydrogen addition demonstrated that hydrogen was able to improve the efficiency of anaerobic TCE biodegradation. Thus, it may be feasible to use nZVI as the source of hydrogen to enhance in situ anaerobic biodegradation of TCE. The advantages of using nZVI as the source of hydrogen include: (1) rapid removal of significant contaminant
concentrations in the early stage of nZVI injection; (2) creation of a more reducing environment; (3) safer than liquid hydrogen, which is stored in steel containers; and (4) direct hydrogen supply without transfer of biological mechanisms compared to commercial hydrogen release compounds and other organic substrates. Results of this study suggest
that biological reductive dechlorination of TCE can be enhanced if proper doses of nZVI are supplied in situ. Knowledge and comprehension obtained in this study will be helpful in designing an enhanced in situ
anaerobic bioremediation system for a TCE-contaminated site.
|
19 |
Stabilization of Arsenic in Iron-Rich Residuals by Crystallization to a Stable Phase of Arsenic MineralShan, Jilei January 2008 (has links)
Many water treatment technologies for arsenic removal that are used today produce arsenic-bearing solid residuals (ABSR), which are disposed in mixed solid waste landfills. It is now well established that many of these residuals will release arsenic into the environment to a much greater extent than predicted by standard regulatory leaching tests and, consequently, require stabilization to ensure benign behaviour after disposal. Conventional waste stabilization technologies, such as cement encapsulation and vitrification, are not suitable for ABSR applications due to their lack of effectiveness or high cost, thus creating a need for a more effective and low-cost treatment technology for ABSR. Arsenic Crystallization Technology (ACT) is a proposed arsenic stabilization method that involves in converting the ABSR into arsenic-bearing minerals that resemble natural materials and have high arsenic capacity, long term stability, and low solubility compared to untreated ABSR. Three arsenic minerals, scorodite, arsenate apatite and ferrous arsenate, have been investigated in this research for their potential application as ACT for ABSR stabilization. Among the three minerals, ferrous arsenate is demonstrated to be the most suitable arsenate mineral for safe arsenic disposal due to its low arsenic solubility and ease of synthesis. An innovative treatment procedure has been developed in this research for stabilization of ABSR to a stable phase of ferrous arsenate using zero-valent iron (ZVI) as the reducing agent. The procedure works at ambient temperature and pressure, and neutral pH. In addition, a modified four-step sequential extraction method has been developed as a means to determine the proportions of various arsenic phases in the stabilized as well as untreated ABSR matrices. This extraction method, as well as traditional leach and solubility tests, show that arsenic stability in the solid phase is dramatically increased after formation of crystalline ferrous arsenate.
|
20 |
Treatment of Water-borne Nutrients, Pathogens, and Pharmaceutical Compounds using Basic Oxygen Furnace SlagHussain, Syed January 2013 (has links)
Phosphorus (P) is one of the essential nutrients for living organisms; however, excess P in aquatic systems often causes environmental and ecological problems including eutrophication. Removal of P from domestic wastewater, industrial wastewater, and agricultural organic-waste systems is required to minimize loading of P to receiving water bodies. A variety of sorbents or filter materials have previously been evaluated for P removal, including natural materials, industrial byproducts, and synthetic products. Among these materials industrial byproducts were reported as most effective. However, only a few of these studies were based on field experiments. Pharmaceutically active compounds (PhACs) and acesulfame-K (an artificial sweetener) are emerging contaminants observed in wastewater. The removal of PhACs in conventional wastewater treatment systems has been studied; however, few studies on alternative treatment systems are available. Studies related to the removal of acesulfame-K are even more limited. This thesis was focused on evaluation of basic oxygen furnace slag (BOFS), a byproduct from the steel manufacturing industry, as a potential reactive media for P removal from surface water and wastewater. The removal of PhACs and acesulfame-K in wastewater treatment systems containing BOFS as a treatment component was also evaluated.
The effectiveness of BOFS for removing P from lake water was evaluated in a three year pilot-scale hypolimnetic withdrawal P treatment system at Lake Wilcox, Richmond Hill, Ontario. Phosphate concentrations of the hypolimnion water ranged from 0.3 to 0.5 mg L-1. About 83-100% P was removed during the experiment. The reactive mixtures were changed each year to improve the performance of the treatment system. Elevated pH (9-12) at the effluent of the treatment system was adjusted by sparging CO2(g) to near neutral pH. Elevated Al was removed through this pH adjustment. Elevated concentrations of V were removed in a column containing 5 wt% zero valent iron (ZVI) mixed with sand (0.5 m3) at the end of the BOFS based column. Removal of P in the BOFS based media is attributed to adsorption and co-precipitation at the outer layer of BOFS. Geochemical modeling results showed supersaturation with respect to hydroxyapatite, ß-tricalciumphosphate, aragonite, and calcite. Solid phase analyzes of the BOFS based reactive media collected after completion of the year 2 experiment (spent media) through combination of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and X-ray absorption near edge structure spectroscopy (XANES) support the presence of calcium phosphate minerals on the outer layer of the spent media.
A multistep wastewater treatment experiment was carried out in an indoor facility at the Center for Alternative Wastewater Treatment, Fleming College, Lindsay, Ontario, Canada. This experiment evaluated the removal of P, ammonia, cBOD5, COD, E. coli, total coliform, and trace metals in a series of treatment cells including a mixing cell, a vertical subsurface flow aerobic cell, a vertical subsurface flow P treatment cell containing BOFS, and a horizontal subsurface flow anaerobic cell. About 97-99% removal of P, NH3, cBOD5, E. coli, and total coliform; and ~72% removal of COD were achieved in the treatment system. The mixing cell and the aerated cell reduced the concentrations of P, ammonia, cBOD5, E. coli, and total coliform significantly and the P treatment cell provided additional treatment. However, the primary objective of the P treatment cell was to reduce P concentrations to the acceptable range according to the water quality guidelines. The P treatment cell had successfully fulfilled this objective. Elevated concentration of Al and V were also observed in the P treatment cell effluent. The concentration of Al decreased to below the guideline value of 0.075 mg L-1 after introducing a pH adjustment unit between the P treatment cell and the anaerobic cell. The concentration of V was decreased in the anaerobic cell effluent. However, the effluent concentration of V was much higher than the guideline value. Geochemical speciation modeling results showed supersaturation with respect to hydroxyapatite, ß-tricalciumphosphate, aragonite and calcite along the flow path. Accumulation of P on the outer layer of the spent BOFS media was identified by energy dispersive X-ray spectroscopy (EDX). Although X-ray photoelectron spectroscopy (XPS) can provide information to a depth of 5-7 nm from the outer layer of the spent media, both Ca and P were positively identified in some of the samples. Accumulation of P at the edge of the grains of the spent media was clearly identified on the element map of polished cross-sections and corresponding FTIR spectra. The phosphate and carbonate functional groups were identified by the distribution of different vibrational frequencies through FTIR spectroscopy. The presence of calcite and hydroxyapatite were inferred based on the wave numbers assigned for these minerals in the literature. Finally, X-ray absorption near edge structure spectroscopy (XANES) on the outer layer samples from the spent BOFS media and corresponding linear combination fitting analysis indicated the presence of ß-tricalciumphosphate, hydroxyapatite, and calcium phosphate dibasic.
Based on the observations from the indoor wastewater treatment experiment, a multistep demonstration-scale outdoor wastewater treatment experiment was conducted to investigate the applicability of the integration of the P treatment technology and engineered wetland technology at a relatively large scale prior to a full-scale field installation. The anaerobic treatment cell was not included in this outdoor system because this unit did not efficiently remove ammonia and metals (e.g. V) from the Cell 4 effluent in the indoor system. A 10 cm layer of zero valent iron was placed at the bottom part of the down flowing P treatment cell to address the elevated V in the P treatment cell effluent observed in the indoor system and also to treat PhACs in the effluent. More than 99% removal of P, E. coli, and total coliform; >82, >98, and >76% removal of ammonia, cBOD5, and COD were achieved in this treatment system. The effluent pH (10.88±1.47) was neutralized and the concentration of V remained < 0.006 mg L-1. The Al concentration was adjusted to <0.075 mg L-1 with the neutralization of pH. Geochemical speciation modeling results showed the supersaturation of hydroxyapatite, ß-tricalciumphosphate, octatricalciumphosphate, aragonite, and calcite. The FTIR and XANES spectra showed the presence of calcium phosphate minerals on the outer layer of the spent media.
Removal of the PhACs, including caffeine, ibuprofen, carbamazepine, naproxen, and sulfamethoxazole, and acesulfame-K was monitored in the demonstration-scale outdoor wastewater treatment system, which consisted of five different treatment cells including a horizontal subsurface flow constructed wetland, a vertical subsurface flow aerated cell, a vertical subsurface flow BOFS cell, and a pH neutralization unit. Significant removal of caffeine (>75%) and ibuprofen (50-75%), and moderate removal of sulfamethoxazole and naproxen (25-50%) were observed. The removal of carbamazepine was less effective with <25% removal observed. Acesulfame-K was also persistent along the flow path with <25% removal.
This study demonstrated that removal of P from lake water and wastewater in excess of 95% could be achieved using BOFS as a reactive media. Integration of this media into an engineered wetland system enhances its performance in removing nutrients and other wastewater contaminants.
|
Page generated in 0.1058 seconds