Spelling suggestions: "subject:"zeroinflated poisson model"" "subject:"zeroinflated boisson model""
1 |
The impact of misspecification of nuisance parameters on test for homogeneity in zero-inflated Poisson model: a simulation studyGao, Siyu January 1900 (has links)
Master of Science / Department of Statistics / Wei-Wen Hsu / The zero-inflated Poisson (ZIP) model consists of a Poisson model and a degenerate distribution at zero. Under this model, zero counts are generated from two sources, representing a heterogeneity in the population. In practice, it is often interested to evaluate this heterogeneity is consistent with the observed data or not. Most of the existing methodologies to examine this heterogeneity are often assuming that the Poisson mean is a function of nuisance parameters which are simply the coefficients associated with covariates. However, these nuisance parameters can be misspecified when performing these methodologies. As a result, the validity and the power of the test may be affected. Such impact of misspecification has not been discussed in the literature. This report primarily focuses on investigating the impact of misspecification on the performance of score test for homogeneity in ZIP models. Through an intensive simulation study, we find that: 1) under misspecification, the limiting distribution of the score test statistic under the null no longer follows a chi-squared distribution. A parametric bootstrap methodology is suggested to use to find the true null limiting distribution of the score test statistic; 2) the power of the test decreases as the number of covariates in the Poisson mean increases. The test with a constant Poisson mean has the highest power, even compared to the test with a well-specified mean. At last, simulation results are applied to the Wuhan Inpatient Care Insurance data which contain excess zeros.
|
2 |
Bayesian Model Selection for Poisson and Related ModelsGuo, Yixuan 19 October 2015 (has links)
No description available.
|
3 |
Modelo destrutivo com variável terminal em experimentos quimiopreventivos de tumores em animaisZavaleta, Katherine Elizabeth Coaguila 12 April 2012 (has links)
Made available in DSpace on 2016-06-02T20:06:07Z (GMT). No. of bitstreams: 1
4375.pdf: 903031 bytes, checksum: 03118f406867a5d7be3cbc63571d4a2b (MD5)
Previous issue date: 2012-04-12 / Financiadora de Estudos e Projetos / The chemical induction of carcinogens in chemopreventive animal experiments is becoming increasingly frequent in biological research. The purpose of these biological experiments is to evaluate the effect of a particular treatment on the rate of tumors incidence in animals. In this work, the number of promoted tumors per animal will be parametrically modeled following the suggestions given by Kokoska (1987) and Freedman et al. (1993). The study of these chemopreventive experiments will be presented in the context of the destructive model proposed by Rodrigues et al. (2010) with terminal variable that allows or censures the experiment at time of the animal death. Since the data analyzed in this field are subject to excess of zeros (Freedman et al. (1993)), we propose for the number of promoted tumors a negative binomial distribution (NB), a zero-inflated Poisson distribution (ZIP), and a zero-inflated Negative Binomial distribution (ZINB). The selection of these models will be made through the likelihood ratio test and the AIC, BIC criteria. The estimation of its parameters will be obtained by using the method of maximum likelihood, and further simulation studies will also be realized. As a future proposition to finalize this project, it is suggested the Bayesian methodology as an alternative to the method of maximum likelihood via the EM algorithm. / A indução química de substâncias cancerígenas em experimentos quimiopreventivos em animais é cada vez mais frequente em pesquisas biológicas. O objetivo destes experimentos biológicos é avaliar o efeito de um determinado tratamento na taxa de incidência de tumores em animais. Neste trabalho o número de tumores promovidos por animal será modelado parametricamente seguindo as sugestões dadas por Kokoska (1987) e por Freedman et al. (1993). O estudo desses experimentos quimiopreventivos será apresentado no contexto do modelo destrutivo proposto por Rodrigues et al. (2010) com variável terminal que condiciona ou censura o experimento no instante de morte do animal. Os dados analisados possuem uma grande quantidade de zeros, portanto será proposto para o número de tumores promovidos as seguintes distribuições: binomial negativa, a distribuição de Poisson com zeros inflacionados e a distribuição binomial negativa com zeros inflacionados. A seleção destes modelos será feita através do teste da razão de verossimilhança e os critérios AIC, BIC. As estimativas dos respectivos parâmetros serão obtidas utilizando o método de máxima verossimilhança e serão feitos estudos de simulação. Para continuar este projeto, a proposta futura é utilizar a metodologia Bayesiana como alternativa ao método de máxima verossimilhança via algoritmo EM.
|
Page generated in 0.0596 seconds