• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 2
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 34
  • 18
  • 16
  • 16
  • 16
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Locality and compositionality in representation learning for complex visual tasks

Sylvain, Tristan 03 1900 (has links)
L'utilisation d'architectures neuronales profondes associée à des innovations spécifiques telles que les méthodes adversarielles, l’entraînement préalable sur de grands ensembles de données et l'estimation de l'information mutuelle a permis, ces dernières années, de progresser rapidement dans de nombreuses tâches de vision par ordinateur complexes telles que la classification d'images de catégories préalablement inconnues (apprentissage zéro-coups), la génération de scènes ou la classification multimodale. Malgré ces progrès, il n’est pas certain que les méthodes actuelles d’apprentissage de représentations suffiront à atteindre une performance équivalente au niveau humain sur des tâches visuelles arbitraires et, de fait, cela pose des questions quant à la direction de la recherche future. Dans cette thèse, nous nous concentrerons sur deux aspects des représentations qui semblent nécessaires pour atteindre de bonnes performances en aval pour l'apprentissage des représentations : la localité et la compositionalité. La localité peut être comprise comme la capacité d'une représentation à retenir des informations locales. Ceci sera pertinent dans de nombreux cas, et bénéficiera particulièrement à la vision informatique, domaine dans lequel les images naturelles comportent intrinsèquement des informations locales, par exemple des parties pertinentes d’une image, des objets multiples présents dans une scène... D'autre part, une représentation compositionnelle peut être comprise comme une représentation qui résulte d'une combinaison de parties plus simples. Les réseaux neuronaux convolutionnels sont intrinsèquement compositionnels, et de nombreuses images complexes peuvent être considérées comme la composition de sous-composantes pertinentes : les objets et attributs individuels dans une scène, les attributs sémantiques dans l'apprentissage zéro-coups en sont deux exemples. Nous pensons que ces deux propriétés détiennent la clé pour concevoir de meilleures méthodes d'apprentissage de représentations. Dans cette thèse, nous présentons trois articles traitant de la localité et/ou de la compositionnalité, et de leur application à l'apprentissage de représentations pour des tâches visuelles complexes. Dans le premier article, nous introduisons des méthodes de mesure de la localité et de la compositionnalité pour les représentations d'images, et nous démontrons que les représentations locales et compositionnelles sont plus performantes dans l'apprentissage zéro-coups. Nous utilisons également ces deux notions comme base pour concevoir un nouvel algorithme d'apprentissage des représentations qui atteint des performances de pointe dans notre cadre expérimental, une variante de l'apprentissage "zéro-coups" plus difficile où les informations externes, par exemple un pré-entraînement sur d'autres ensembles de données d'images, ne sont pas autorisées. Dans le deuxième article, nous montrons qu'en encourageant un générateur à conserver des informations locales au niveau de l'objet, à l'aide d'un module dit de similarité de graphes de scène, nous pouvons améliorer les performances de génération de scènes. Ce modèle met également en évidence l'importance de la composition, car de nombreux composants fonctionnent individuellement sur chaque objet présent. Pour démontrer pleinement la portée de notre approche, nous effectuons une analyse détaillée et proposons un nouveau cadre pour évaluer les modèles de génération de scènes. Enfin, dans le troisième article, nous montrons qu'en encourageant une forte information mutuelle entre les représentations multimodales locales et globales des images médicales en 2D et 3D, nous pouvons améliorer la classification et la segmentation des images. Ce cadre général peut être appliqué à une grande variété de contextes et démontre les avantages non seulement de la localité, mais aussi de la compositionnalité, car les représentations multimodales sont combinées pour obtenir une représentation plus générale. / The use of deep neural architectures coupled with specific innovations such as adversarial methods, pre-training on large datasets and mutual information estimation has in recent years allowed rapid progress in many complex vision tasks such as zero-shot learning, scene generation, or multi-modal classification. Despite such progress, it is still not clear if current representation learning methods will be enough to attain human-level performance on arbitrary visual tasks, and if not, what direction should future research take. In this thesis, we will focus on two aspects of representations that seem necessary to achieve good downstream performance for representation learning: locality and compositionality. Locality can be understood as a representation's ability to retain local information. This will be relevant in many cases, and will specifically benefit computer vision where natural images inherently feature local information, i.e. relevant patches of an image, multiple objects present in a scene... On the other hand, a compositional representation can be understood as one that arises from a combination of simpler parts. Convolutional neural networks are inherently compositional, and many complex images can be seen as composition of relevant sub-components: individual objects and attributes in a scene, semantic attributes in zero-shot learning are two examples. We believe both properties hold the key to designing better representation learning methods. In this thesis, we present 3 articles dealing with locality and/or compositionality, and their application to representation learning for complex visual tasks. In the first article, we introduce ways of measuring locality and compositionality for image representations, and demonstrate that local and compositional representations perform better at zero-shot learning. We also use these two notions as the basis for designing class-matching deep info-max, a novel representation learning algorithm that achieves state-of-the-art performance on our proposed "Zero-shot from scratch" setting, a harder zero-shot setting where external information, e.g. pre-training on other image datasets is not allowed. In the second article, we show that by encouraging a generator to retain local object-level information, using a scene-graph similarity module, we can improve scene generation performance. This model also showcases the importance of compositionality as many components operate individually on each object present. To fully demonstrate the reach of our approach, we perform detailed analysis, and propose a new framework to evaluate scene generation models. Finally, in the third article, we show that encouraging high mutual information between local and global multi-modal representations of 2D and 3D medical images can lead to improvements in image classification and segmentation. This general framework can be applied to a wide variety of settings, and demonstrates the benefits of not only locality, but also of compositionality as multi-modal representations are combined to obtain a more general one.
Read more
42

Prompt-learning and Zero-shot Text Classification with Domain-specific Textual Data

Luo, Hengyu January 2023 (has links)
The rapid growth of textual data in the digital age presents unique challenges in domain-specific text classification, particularly the scarcity of labeled data for many applications, due to expensive cost of manual labeling work. In this thesis, we explore the applicability of prompt-learning method, which is well-known for being suitable in few-shot scenarios and much less data-consuming, as an emerging alternative to traditional fine-tuning methods, for domain-specific text classification in the context of customer-agent interactions in the retail sector. Specifically, we implemented the entire prompt-learning pipeline for the classification task, and, our investigation encompasses various strategies of prompt-learning, including fixed-prompt language model tuning strategy and tuning-free prompting strategy, along with an examination of language model selection, few-shot sampling strategy, prompt template design, and verbalizer design. In this manner, we assessed the overall performance of the prompt-learning method in the classification task. Through a systematic evaluation, we demonstrate that with the fixed-prompt language model tuning strategy, based on relatively smaller language models (e.g. T5-base with around 220M parameters), prompt-learning can achieve competitive performance (close to 75% accuracy) even with limited labeled data (up to merely 15% of full data). And besides, with the tuning-free prompting strategy, based on a regular-size language model (e.g. FLAN-T5-large with around 770M parameters), the performance can be up to around 30% accuracy with detailed prompt templates and zero-shot setting (no extra training data involved). These results can offer valuable insights for researchers and practitioners working with domain-specific textual data, prompt-learning and few-shot / zero-shot learning. The findings of this thesis highlight the potential of prompt-learning as a practical solution for classification problems across diverse domains and set the stage for future research in this area.
Read more
43

Bridging Language & Data : Optimizing Text-to-SQL Generation in Large Language Models / Från ord till SQL : Optimering av text-till-SQL-generering i stora språkmodeller

Wretblad, Niklas, Gordh Riseby, Fredrik January 2024 (has links)
Text-to-SQL, which involves translating natural language into Structured Query Language (SQL), is crucial for enabling broad access to structured databases without expert knowledge. However, designing models for such tasks is challenging due to numerous factors, including the presence of ’noise,’ such as ambiguous questions and syntactical errors. This thesis provides an in-depth analysis of the distribution and types of noise in the widely used BIRD-Bench benchmark and the impact of noise on models. While BIRD-Bench was created to model dirty and noisy database values, it was not created to contain noise and errors in the questions and gold queries. We found after a manual evaluation that noise in questions and gold queries are highly prevalent in the financial domain of the dataset, and a further analysis of the other domains indicate the presence of noise in other parts as well. The presence of incorrect gold SQL queries, which then generate incorrect gold answers, has a significant impact on the benchmark’s reliability. Surprisingly, when evaluating models on corrected SQL queries, zero-shot baselines surpassed the performance of state-of-the-art prompting methods. The thesis then introduces the concept of classifying noise in natural language questions, aiming to prevent the entry of noisy questions into text-to-SQL models and to annotate noise in existing datasets. Experiments using GPT-3.5 and GPT-4 on a manually annotated dataset demonstrated the viability of this approach, with classifiers achieving up to 0.81 recall and 80% accuracy. Additionally, the thesis explored the use of LLMs for automatically correcting faulty SQL queries. This showed a 100% success rate for specific query corrections, highlighting the potential for LLMs in improving dataset quality. We conclude that informative noise labels and reliable benchmarks are crucial to developing new Text-to-SQL methods that can handle varying types of noise.
Read more
44

Zero-Shot Cross-Lingual Domain Adaptation for Neural Machine Translation : Exploring The Interplay Between Language And Domain Transferability

Shahnazaryan, Lia January 2024 (has links)
Within the field of neural machine translation (NMT), transfer learning and domain adaptation techniques have emerged as central solutions to overcome the data scarcity challenges faced by low-resource languages and specialized domains. This thesis explores the potential of zero-shot cross-lingual domain adaptation, which integrates principles of transfer learning across languages and domain adaptation. By fine-tuning a multilingual pre-trained NMT model on domain-specific data from one language pair, the aim is to capture domain-specific knowledge and transfer it to target languages within the same domain, enabling effective zero-shot cross-lingual domain transfer. This study conducts a series of comprehensive experiments across both specialized and mixed domains to explore the feasibility and influencing factors of zero-shot cross-lingual domain adaptation. The results indicate that fine-tuned models generally outperform the pre-trained baseline in specialized domains and most target languages. However, the extent of improvement depends on the linguistic complexity of the domain, as well as the transferability potential driven by the linguistic similarity between the pivot and target languages. Additionally, the study examines zero-shot cross-lingual cross-domain transfer, where models fine-tuned on mixed domains are evaluated on specialized domains. The results reveal that while cross-domain transfer is feasible, its effectiveness depends on the characteristics of the pivot and target domains, with domains exhibiting more consistent language being more responsive to cross-domain transfer. By examining the interplay between language-specific and domain-specific factors, the research explores the dynamics influencing zero-shot cross-lingual domain adaptation, highlighting the significant role played by both linguistic relatedness and domain characteristics in determining the transferability potential.
Read more

Page generated in 0.0309 seconds