• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 36
  • 24
  • 16
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 242
  • 82
  • 78
  • 68
  • 64
  • 55
  • 37
  • 31
  • 27
  • 26
  • 24
  • 21
  • 20
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Detrital-zircon geochronologic provenance analyses that test and expand the East Siberia-West Laurentia Rodinia reconstruction

MacLean, John Stuart. January 2007 (has links)
Thesis (Ph. D.)--University of Montana, 2007. / Title from title screen. Description based on contents viewed July 19, 2007. Includes bibliographical references (p. 115-132).
42

Laser ablation ICP-MS age determination of detrital zircon populations in the Phanerozoic Cape and Lower Karoo Supergroups (South Africa) and correlatives in Argentina.

Vorster, Clarisa 14 January 2014 (has links)
Ph.D. (Geology) / The successions of the Cape- and Karoo Supergroups preserve an integrated history of sedimentation along the paleo-Pacific margin of Gondwana from the Paleozoic to the Early Mesozoic. The Cape- and Karoo Supergroups have been well studied with regard to stratigraphy, sedimentary facies and depositional environment. However, the nature and location of their source regions, especially for the changeover from deposition within an Atlantic-type continental margin basin for the successions of the Cape Supergroup to an Andean-type continental foreland basin for some of the units of the Karoo Supergroup, remains poorly understood. In order to shed light on the nature of these source regions, a comprehensive U-Pb detrital zircon study of the successions of the Cape- and lower Karoo Supergroups was launched. A representative number of samples from the upper and lower successions of the Table Mountain- Bokkeveld- and Witteberg Groups of the Cape Supergroup as well as the Dwyka and Ecca Groups of the Karoo Supergroup were collected throughout the western, southwestern and southern Cape region. A few samples of the Dwyka Group were also collected within the more eastern outcrop regions of the succession located in Kwazulu-Natal. The sedimentary rocks of the Natal Group and Msikaba Formation have long been regarded as coeval with the Cape Supergroup. Similar to the successions of the Cape- and Karoo Supergroups, very little is known about their sedimentary source regions. Also, their relative age of sedimentation remains poorly constrained. The U-Pb detrital zircon study of the successions of the Cape- and lower Karoo Supergroups was thus extended so as to include the successions of the Natal Group and Msikaba Formation. The detrital zircon age populations of the successions of the Natal Group and Msikaba Formation would not only improve the present understanding with regards to the sedimentary source regions to these units but would also facilitate the evaluation of possible correlations between these units and the stratigraphic units of the Cape Supergroup. Samples of both the lower Durban Formation and the upper Mariannhill Formation of the Natal Group and the Msikaba Formation (which is presently regarded as being part of the Cape Supergroup) were therefore collected within their respective outcrop regions in the Kwazulu-Natal area. The similarities in litho- and bio-stratigraphy between the successions of the Cape- and Karoo Supergroups and those of the Ordovician to Early Permian successions of the Ventania System and the Ordovician to Silurian successions of the Tandilia System in Argentina have long been recognized. Although the detrital zircon populations of some of the formations within these Systems have been evaluated in the past, it is yet to be determined whether these successions and those of the Cape- and lower Karoo Supergroups have certain source regions in common. In order to facilitate such a comparison, samples of selected units of the Ventania System were therefore collected near Sierra de la Ventania, while a sample of the Balcarce Formation of the Tandilia System was obtained near Mar del Plata. The detrital zircon age populations of the successions of the Ventania and Tandilia Systems were also further evaluated in the light of establishing or confirming a time-correlation between these formations and those of the Cape- and lower Karoo Supergroups. U-Pb age determination of the detrital zircons population of the samples was conducted by means of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Although LA-ICP-MS is a routine, well-established technique where the U-Pb age determination of detrital zircons is concerned, it was yet to be established at the centralized analytical facility of the University of Johannesburg, SPECTRUM, using the instrumentation currently available (i.e. 213nm Nd:YAG laser coupled to Quadrupole-based ICP-MS). The U-Pb age determination of detrital zircons was therefore preceded by a fair amount of instrument optimization and method development. Well studied shortcomings of U-Pb detrital zircon dating by LA-ICP-MS such as laser induced elemental fractionation, mass discrimination effects and as well as the possible occurrence of minor common-Pb needs were addressed and corrected for. The detrital zircon populations of successions in the Cape Supergroup have a distinct major Neoproterozoic to Early Cambrian age component, which can be attributed to an input of detritus from successions related to the Pan-African Orogeny in South Africa, such as the Gariep- and Saldania Belts located towards the north of the Cape Basin. A substantial amount of Mesoproterozoic detrital zircon grains is also present in all the samples from the successions of the Cape Supergroup. These grains of Mesoproterozoic age were probably derived from the Namaqua-Natal Metamorphic Province, which is also regarded as the source of some minor amounts of Paleoproterozoic detrital zircon grains. The near absence of Archean grains from the detrital zircon populations of the successions of the Cape Supergroup is notable, and is thought to be due to the Namaqua-Natal Metamorphic Province acting as a geomorphological barrier at the time of their deposition. The minor Paleozoic (Ordovician to Carboniferous) detrital zircon populations in the samples from the formations of the Cape Supergroup increase progressively upwards through the succession. ....
43

Late Cenozoic Offshore Record of Exhumation and Sediment Routing in Southeast Alaska from Detrital Zircon U/Pb and FT double-dating

Bootes, Nathaniel R. 29 October 2020 (has links)
No description available.
44

Zircon LA-ICPMS Geochronology of the Cornubian Batholith, SW England

Neace, Erika R. January 2015 (has links)
No description available.
45

U-Pb age and Hf isotopic study of detrital zircons from the Liaohe Group: constraints on the evolution of theJiao-Liao-Ji Belt, North China craton

Luo, Yan, 羅彥 January 2005 (has links)
published_or_final_version / abstract / Earth Sciences / Doctoral / Doctor of Philosophy
46

Geochronologic and Petrologic Context for Deep Crustal Metamorphic Core Complex Development, East Humboldt Range, Nevada

Dilles, Zoe Y G 01 January 2016 (has links)
The Ruby-Humboldt Range in Northeastern Nevada exposes the deepest crust in the western portion of the Sevier Hinterland. The product of unique brittle and ductile accommodations, this block of lower crustal rock is a window into the processes of continental thickening and extension. The structure of the northern tip of the Ruby-Humboldt Range core complex is dominated by a large recumbent fold nappe with a southward closeure cored by Paleoproterozoic-Archean gneissic complexes with complex interdigitated field relationships that record polyphase continental metamorphism. Amphibolite-grade metapelitic rocks within the core and Winchell Lake nappe record a wide range of zircon age dates of metamorphic events the oldest of which at ~2.5 Ga is recorded in adjacent orthogneiss as a crystallization age. At least two younger metamorphic events are recorded within this orthogneiss, most significantly at 1.7-1.8 Ga, an event previously unpublished for this region that links it to Wyoming province activity in addition to inherited component of detrital cores up to 3.7 Ga in age that is among the oldest ages reported in Nevada. The youngest overprint of cretaceous metamorphic overgrowth ranges fro 60-90 Ma in age based on zircon rims in the aforementioned units as well as three garnet amphibolites that intrude the core of the nappe and are interpreted to be metabasic bodies.
47

New Constraints on the Age of Deposition and Provenance of the Metasedimentary Rocks in the Nashoba Terrane, SE New England

Loan, MaryEllen Louise January 2011 (has links)
Thesis advisor: J. Christopher Hepburn / The Nashoba terrane of SE New England is one of three peri-Gondwanan tectonic blocks caught between Laurentia and Gondwana during the closure of the Iapetus Ocean in the early to mid- Paleozoic. U-Pb analyses (LA-ICP-MS) were carried out on zircon suites from the meta-sedimentary rocks of the Nashoba terrane. The youngest detrital zircons in the meta-sedimentary rocks of the Nashoba terrane are Ordovician in age. There is no significant difference in age between meta-sedimentary units of the Nashoba terrane across the Assabet River Fault Zone, a major fault zone that bisects the NT in a SE and a NW par. Zircon in meta-sedimentary rocks in the Marlboro Fm., the oldest unit of the Nashoba terrane, is rare, which may reflect the basaltic nature of the source material, and is commonly metamict. The Marlboro Fm. contained the oldest detrital grain of all the analyzed samples, with a core of ~3.3 Ga and rim of ~2.6 Ga indicating that it was sourced from Archaen crustal material. Detrital zircons from the Nashoba terrane show a complete age record between the Paleoproterozoic and Paleozoic that strongly supports a provenance from the Oaxiqua margin of Amazonia. The detrital zircon suite of the Nashoba terrane is distinct from both Avalonia and the Merrimack belt; however, they resemble zircon suites from Ganderia. This study proposes that the Nashoba terrane of Massachusetts correlates with the passive trailing edge of Ganderia. Finally, metamorphic zircon analyses of the terrane show that the Nashoba terrane experienced a peak in hydrothermal fluid infiltration during the Neoacadian orogeny. / Thesis (MS) — Boston College, 2011. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
48

New CA-ID-TIMS Detrital Zircon Constraints on Middle Neoproterozoic Sedimentary Successions, Southwestern United States

Bullard, Abigail R. 01 December 2018 (has links)
Three related sedimentary successions located in Arizona, Utah, and California were deposited in basins on proto-North America during the early rifting of Rodinia (~780 Mya). Previous detrital zircon U-Pb maximum ages for the units are inexact, making it difficult to piece together what happened at this point in Earth history. We report better maximum age constraints on these units obtained by subjecting detrital zircons to high-precision CA-ID-TIMS analysis, which provide more exact 206 Pb/238U ages. These new data significantly improve the precision for the base of the ChUMP units, with an average age of 775. 63 ± 0.27 Ma acquired for the bottom of the Chuar Group, where earlier work put the age at 782 Ma. An average age of 775.44 ± 0.73 Ma for the bottom of the Pahrump Group is also younger than the previously reported 787 ± 11 Ma. Zircons of the Uinta Mountain Group provided ages of about 766.88 ± 2.31 Ma, which is on par with an earlier age of 766.4 ± 4.8 Ma. These high precision ages for the young detrital zircons in the ChUMP units improve links between the units and provide better context for geochemical, isotopic, and biological events that occurred during the initial rifting of Rodinia.
49

Sequence Stratigraphy and Detrital Zircon Provenance of the Eureka Quartzite in South-Central Nevada and Eastern California

Workman, Benjamin David 2012 May 1900 (has links)
The Middle-Late Ordovician Eureka Quartzite in south-central Nevada and eastern California is a supermature quartz arenite that was deposited along the Lower Paleozoic western passive margin of Laurentia. Measured section descriptions and facies stacking patterns indicate that the Eureka Quartzite represents a 3rd-order sequence and contains three ~2-4 m.y. sequences and many small parasequences. Detrital zircon analysis of eight samples from the base and top of four locations contains three main populations of ~1.8-2.0 Ga, ~2.6-2.8 Ga, and ~2.0-2.3 Ga, and a smaller infrequent population of ~1.6-1.8 Ga grains. These peaks are interpreted to represent sediment sourced from exposed proximal basement to the east, likely from the Yavapai and Mazatzal Provinces (~1.6-1.7 Ga), the Trans-Hudson Orogen (~1.8-1.9 Ga), Paleoproterozoic crusts (~2.0-2.3 Ga), and underlying or proximal Archean (~2.6-2.8 Ga) sources. Sediment likely was transported to the shoreline and across Archean basement by rivers draining the Transcontinental Arch. Long-shore currents played an important role in deposition and likely account for the similarity of Middle-Late Ordovician, supermature, quartz arenite deposits on western Laurentia. Although the Peace River Arch likely provided some sediment for the Eureka Quartzite, it is apparent its provenance was mostly Trans-Hudson Orogen and Archean basement. Temporal and spatial provenance changes are inferred from probability-density plots of the detrital zircon analyses to indicate sea-level changes covered or exposed possible sediment sources during deposition.
50

Structural geology and geochronology of the Kluane schist, southwestern Yukon Territory

Stanley, Benjamin January 2012 (has links)
In light of the recent increase of mineral exploration in the northern Cordillera, private, educational, and governmental agencies have been compelled to revisit and research areas of the Cordillera whose geologic evolution still remains enigmatic. The current study is concerned with better understanding how a region of the boundary zone separating the peri-Laurentian realm from the exotic, Insular realm evolved following deposition of the meta-sedimentary Kluane schist in the Late Cretaceous. The schist is a northwest striking 30 km wide and 160 km long belt of highly deformed greenschist to amphibolite facies meta-sedimentary rocks located east of Kluane Lake, southwestern Yukon Territory. These deformed sediments as well as numerous other deformed Jurassic-Cretaceous meta-sedimentary units present along the same boundary zone (north and south of the schist) represent important rocks that can help constrain how this part of the Cordillera has evolved since the mid-Mesozoic. To better understand how the Kluane schist evolved, detailed field mapping, petrography, and U-Pb geochronological studies were undertaken in the area encompassing the schist. This data is integrated with pre-existing and recently collected geologic databases from the region to propose a model for the tectonic and structural evolution of the Kluane schist. Conclusions drawn from this study indicate the Kluane sediments were likely deposited into a closing Late Cretaceous seaway from sources derived from Yukon-Tanana terrane (YTT) to the east. The basin into which the sediments were deposited represents a remnant ocean basin that was present between Insular terrane and YTT prior their amalgamation in the Jurassic. Thrusting of YTT over the Kluane schist basin resulted in burial, metamorphism, and ductile deformation of the schist. Contemporaneously, the early stages of the Ruby Range batholith (RRB) were intruding the schist as well as the schist/YTT contact. This batholith intruded syn- to post-tectonically from approximately ca. 77 Ma to 65 Ma and it is responsible for imparting a kilometer scale inverted contact metamophic aureole onto the Kluane schist wherein metamorphic grade decreases to the southwest. Subsequently, a gneissic sub-unit of the Kluane ‘schist’ was formed by partial melting of the RRB/Kluane schist contact. During this composite deformation event, the schist was transported to mid-crustal depths by an oblique sinistral shear zone. Shortly thereafter, the schist was exhumed and deformed by consistent northeast-over-southwest shearing. Regional scale, broad open folding of the schist ensued and likely occurred by flexural slip along foliation planes with low cohesion. Two syn- to post- tectonic igneous phases associated with Hayden Lake intrusive suite have been dated to ca. 55 Ma. This timing likely correlates with broad, open folding and a ‘late’ syn- to post-kinematic thermal overprint of the schist. The combined results of this study indicate that deformation and metamorphism of the Kluane schist was a long-lived event, extending from ca. 82 Ma to ca. 55 Ma.

Page generated in 0.0493 seconds