• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nutritional interactions between the alga Symbiodinium and sea anemone Aiptasia pulchella

Wang, Jih-Terng January 1998 (has links)
No description available.
2

Coral bleaching: photosynthetic impacts on symbiotic dinoflagellates.

Hill, Ross January 2008 (has links)
University of Technology, Sydney. Faculty of Science. / Global climate change is leading to the rise of ocean temperatures and is triggering mass coral bleaching events on reefs around the world. This involves the expulsion of the symbiotic dinoflagellate algae, known as zooxanthellae, from the coral host. Coral bleaching is believed to occur as a result of damage to the photosynthetic apparatus of these symbionts, although the specific site of initial impact is yet to be conclusively resolved. This thesis examined a number of sites within the light reactions of photosynthesis and evaluated the efficiency of photoprotective heat dissipating pathways. Upon expulsion, the capacity for long-term survivorship of expelled zooxanthellae in the water column was also assessed. A reduction in photosystem II (PSII) photochemical efficiency during exposure to elevated temperature and high light (bleaching conditions) was found to be highly dependent upon the increase in abundance of QB non-reducing PSII centres (inactive PSII centres), indicating damage to the site of the secondary electron acceptor, QB, resulting in a limited capacity for its reduction. Therefore, this reduced the rate of the reoxidation of the primary electron acceptor, QA-. Fast induction curve (FIC) analysis of the rise from minimum fluorescence to maximum fluorescence revealed a lower amplitude in the J step along this curve, which was consistent with a reduction in the rate of QA reoxidation. This photoinhibition of PSII was found to occur once the effectiveness of excess energy dissipation through energy-dependent quenching and state-transition quenching was exceeded, suggesting that these mechanisms were incapable of preventing photodamage. Antenna size heterogeneity showed little change under bleaching conditions with a significant increase in PSIIbeta only apparent in one species of coral. The thermostability of the oxygen evolving complex (OEC) and thylakoid membrane were found to increase during exposure to bleaching conditions and exceeded bleaching thresholds of corals. This rapid rise in temperature-dependent thermostability also occurred over seasons, where variation in ocean temperatures was matched by gradual shifts in OEC and thylakoid membrane thermotolerance. Variation in thermostability between species was not found to be linked to zooxanthellae genotype, and instead was related to the bleaching susceptibility of the host. Despite this capacity for resilience to bleaching conditions, the PSII reaction centres did not exhibit such a mechanism for rapid acclimatisation. Corals can only be as tolerant to bleaching conditions as their most sensitive component allows. The formation of nonfunctional PSII centres is therefore suggested to be involved in the initial photochemical damage to zooxanthellae which leads to a bleaching response. Zooxanthellae were found to be expelled irrespective of OEC function and thylakoid membrane integrity, as these sites of the photosynthetic apparatus were still intact when cells were collected from the water column. Although zooxanthellae were photosynthetically competent and morphologically intact upon expulsion, their longevity in the water column was dependent on the time of expulsion following the onset of bleaching and the ambient water temperatures. The survivorship of these zooxanthellae was restricted to a maximum of 5 days in the water column which suggests that unless expelled zooxanthellae inhabit other environs of coral reefs which may be more favourable for survival, their capacity for persistence in the environment is extremely limited. Chlorophyll a fluorescence measurements are a common tool for investigating photosynthetic impacts to in hospite zooxanthellae of corals. Pathways causing dark-reduction of the plastoquinone pool are shown to be active in corals and affect measurements which require dark-adaptation. Pre-exposure to far-red light was found to be an effective procedure to oxidise the inter-system electron transport chain and ensure determination of the true maximum quantum yield of PSII and accurate FICs. It is concluded that the trigger for coral bleaching lies in the photosynthetic apparatus of zooxanthellae and evidence is presented in support of this impact site not being the OEC or thylakoid membrane.
3

Cloning and functional analysis of ApRab37 in the Aiptasia-Symbiodinium endosymbiosis

Shih, Ya-Hui 21 July 2011 (has links)
Coral reefs ecosystems are some of the most productive and diverse in the world. The symbiotic association between cnidarians and their symbiotic microalgae is of great importance in coral reef ecosystems; however, its underlying molecular mechanism remains unclear even after decades of research. Rab small GTP binding proteins are critical regulators of vesicle trafficking. Here we present the experimental evidence supporting a possible association of ApRab37 with the surface of lipid droplets in the endosymbiosis between the sea anemone, Aiptasia pulchella and the symbiotic dinoflagellate (commonly known as zooxanthellae). ApRab37, a protein of 215 amino acids, displays strong homology with human Rab37. In transfected COS7 cells, EGFP-ApRab37 localized to lipid droplets and clustered in the peri-nuclear region, which stained positive for the ER (endoplasmic reticulum) marker. Immunostaining analysis found ApRab37 associated with symbiosomes and lipid droplets, which was also confirmed by Western blot analysis of in the enrich lipid droplet fraction. Phagocytosis assay showed that ApRab37 involved in late phase of phagocytosis. DCMU treatment indicates symbiosome association of ApRab37 is mediated by zooxanthellae. I propose that ApRab37 plays a pivotal role in the regulation of lipid trafficking from the symbiosomes to the host cell during the Aiptasia-zooxanthellal endosymbiosis.
4

Variations in zooxanthellae and recovery of bleached colonies in Acropora intermedia

Tseng, Chih-Lin 06 June 2005 (has links)
The maximum quantum yield (Fv/Fm), zooxanthellae density, chlorophyll a concentration and protein concentration of non-bleached and bleached colonies of the reef coral Acropora intermedia were measured in inlet of The Third Nuclear Power Plant of Nanwan Bay in southern Taiwan. A significant positive correlation was found between Fv/Fm and chlorophyll a concentration per zooxanthellae of non-bleached colonies. The chlorophyll a concentration per zooxanthellae and zooxanthellae density of non-bleached colonies were lowest in summer, and were significantly negative correlated with total radiant heat and seawater temperature, respectively. This suggests that the seasonal variation exist, and they maybe regulated by seasonal fluctuation of radiation and temperature. The Fv/Fm, chlorophyll a concentration per cm-2, chlorophyll a concentration per zooxanthellae, zooxanthellae density and protein were significantly lower than those of the non-bleached colonies in the bleaching events. However, compared to the non-bleached colonies, zooxanthellae density, chlorophyll a concentration per cm-2 and protein of bleached colonies were increased and significantly higher than those of non-bleached colonies, then decreased to similar level. However, Fv/Fm increased to similar level, but chlorophyll a concentration per zooxanthellae remained lower. It suggests that number of zooxanthellae rapidly increased while remained stable chlorophyll a concentration during recovery.
5

The importance of zooxanthellae for the nitrogenous excretion of some hermatypic corals /

Sloterdijk, Harm January 1975 (has links)
No description available.
6

Coral bleaching: photosynthetic impacts on symbiotic dinoflagellates.

Hill, Ross January 2008 (has links)
University of Technology, Sydney. Faculty of Science. / Global climate change is leading to the rise of ocean temperatures and is triggering mass coral bleaching events on reefs around the world. This involves the expulsion of the symbiotic dinoflagellate algae, known as zooxanthellae, from the coral host. Coral bleaching is believed to occur as a result of damage to the photosynthetic apparatus of these symbionts, although the specific site of initial impact is yet to be conclusively resolved. This thesis examined a number of sites within the light reactions of photosynthesis and evaluated the efficiency of photoprotective heat dissipating pathways. Upon expulsion, the capacity for long-term survivorship of expelled zooxanthellae in the water column was also assessed. A reduction in photosystem II (PSII) photochemical efficiency during exposure to elevated temperature and high light (bleaching conditions) was found to be highly dependent upon the increase in abundance of QB non-reducing PSII centres (inactive PSII centres), indicating damage to the site of the secondary electron acceptor, QB, resulting in a limited capacity for its reduction. Therefore, this reduced the rate of the reoxidation of the primary electron acceptor, QA-. Fast induction curve (FIC) analysis of the rise from minimum fluorescence to maximum fluorescence revealed a lower amplitude in the J step along this curve, which was consistent with a reduction in the rate of QA reoxidation. This photoinhibition of PSII was found to occur once the effectiveness of excess energy dissipation through energy-dependent quenching and state-transition quenching was exceeded, suggesting that these mechanisms were incapable of preventing photodamage. Antenna size heterogeneity showed little change under bleaching conditions with a significant increase in PSIIbeta only apparent in one species of coral. The thermostability of the oxygen evolving complex (OEC) and thylakoid membrane were found to increase during exposure to bleaching conditions and exceeded bleaching thresholds of corals. This rapid rise in temperature-dependent thermostability also occurred over seasons, where variation in ocean temperatures was matched by gradual shifts in OEC and thylakoid membrane thermotolerance. Variation in thermostability between species was not found to be linked to zooxanthellae genotype, and instead was related to the bleaching susceptibility of the host. Despite this capacity for resilience to bleaching conditions, the PSII reaction centres did not exhibit such a mechanism for rapid acclimatisation. Corals can only be as tolerant to bleaching conditions as their most sensitive component allows. The formation of nonfunctional PSII centres is therefore suggested to be involved in the initial photochemical damage to zooxanthellae which leads to a bleaching response. Zooxanthellae were found to be expelled irrespective of OEC function and thylakoid membrane integrity, as these sites of the photosynthetic apparatus were still intact when cells were collected from the water column. Although zooxanthellae were photosynthetically competent and morphologically intact upon expulsion, their longevity in the water column was dependent on the time of expulsion following the onset of bleaching and the ambient water temperatures. The survivorship of these zooxanthellae was restricted to a maximum of 5 days in the water column which suggests that unless expelled zooxanthellae inhabit other environs of coral reefs which may be more favourable for survival, their capacity for persistence in the environment is extremely limited. Chlorophyll a fluorescence measurements are a common tool for investigating photosynthetic impacts to in hospite zooxanthellae of corals. Pathways causing dark-reduction of the plastoquinone pool are shown to be active in corals and affect measurements which require dark-adaptation. Pre-exposure to far-red light was found to be an effective procedure to oxidise the inter-system electron transport chain and ensure determination of the true maximum quantum yield of PSII and accurate FICs. It is concluded that the trigger for coral bleaching lies in the photosynthetic apparatus of zooxanthellae and evidence is presented in support of this impact site not being the OEC or thylakoid membrane.
7

The importance of zooxanthellae for the nitrogenous excretion of some hermatypic corals /

Sloterdijk, Harm January 1975 (has links)
No description available.
8

Climate change impacts on Caribbean coral reefs : reef accretion and scope for acclimation through symbiont genetic diversity

Kennedy, Emma Victoria January 2013 (has links)
Caribbean coral reefs are in crisis. Degradation of living coral and fish assemblages has accelerated during the past half century, with a suite of anthropogenic drivers –from local fishing pressure to unprecedented global scale climate change– implicated. Accompanying these losses is the physical disintegration of the three-dimensional calcium carbonate reef structure. Flattening of reefs, synonymous with loss of ecosystem function and provision of services, is caused by an imbalance in the carbonate budget: a trade-off between carbonate production and consolidation by calcifying organisms (principally coral-algal symbioses) and framework breakdown by bioeroding organisms and storms. This thesis focuses on expanding our understanding of two functionally critical issues that strongly influence Caribbean coral reef community composition and dynamics, and which look likely to have a key bearing on the future state of reefs in the region: coral photosynthetic endosymbionts, and carbonate budgets. The former exert an important role in the production of the coral carbonate framework, whilst the latter reflect the dynamics of reef carbonate production and erosion. In the first part of the thesis, existing information on rates of carbonate production and erosion on Caribbean reefs is utilised to construct a detailed theoretical carbonate budget model. The model is used to chart historic changes in Caribbean carbonate budgets, tracking reef flattening across time and identifying key ecological drivers of these changes. This “eco-geomorphic” model is then coupled with state-of-the-art climate and ecological models, to project reef processes to the end of the century, asking the question ‘at what point will Caribbean reefs shift to net erosional regimes?’. The models are also used to explore the efficacy of local management and climate mitigation in altering the negative trajectory of reefs under projected warming and ocean acidification. In the second part of the thesis, 632 corals from across the wider Caribbean are screened, to construct the largest recorded baseline of symbiont biogeography for the region’s key remaining reef framework builder, Montastraea annularis. Spatial patterns of symbiont diversity are explored in terms of environmental, geographic and genetic factors, contributing to the growing body of work currently in the early stages of cataloguing symbiont diversity and its ecological significance. Although carbonate budget models forecast a bleak outlook for the Caribbean, detection of widespread low-level prevalence of thermally-tolerant endosymbionts in M. annularis provides a weak ‘nugget of hope’ for potential coral acclimation. Combined local management and aggressive mitigative action on carbon emissions are pre-requisites for maintenance of functioning reefs into the next century. Coral reef conservation efforts can be improved if we fully appreciate the contributions of all reef components –not just the enigmatic ones– to healthy reef functioning.
9

The symbiotic relationship between Symbiodinium and coral reef larvae: gene expression, fatty acid biochemistry and responses to thermal stress / A relação simbiótica entre Symbiodinium e larvas recifais: expressão gênica, produção de ácidos graxos e respostas ao estresse térmico

Mies, Miguel 24 March 2017 (has links)
Very little is known about the association between Symbiodinium dinoflagellates, which perform the majority of primary production in coral reefs, and metazoan larvae. This thesis performed three experiments on the association between Symbiodinium and Mussismilia hispida (coral), Berghia stephanieae (nudibranch) and Tridacna crocea (giant clam) larvae. The first experiment monitored the expression of a symbiosis-specific gene in Symbiodinium clade A associated with the three larval forms during a 72-h window. The second experiment quantified the production of symbiosis-related ω3 fatty acids in Symbiodinium clades A-F also associated with the three larval hosts and the third experiment verified bleaching rates at 26, 29 and 32ºC in the larvae associated with clades A-F. The main results show that i) a symbiosis-specific gene is expressed by Symbiodinium A associated with M. hispida and T. crocea larvae, but not with B. stephanieae; ii) the DHA fatty acid is produced in significantly higher amounts by clades A and C associated with M. hispida and T. crocea larvae; and iii) that M. hispida and T. crocea larvae associated with Symbiodinium A and C have significantly lower bleaching rates. These findings suggest that clades A and C establish a more robust mutualism with M. hispida and T. crocea larvae, but there seems to be no mutualism between Symbiodinium and B. stephanieae. / Muito pouco é conhecido sobre a associação entre dinoflagelados do gênero Symbiodinium e larvas de metazoários. Essa tese realizou três experimentos sobre a associação entre Symbiodinium e larvas de Mussismilia hispida (coral), Berghia stephanieae (nudibrânquio) e Tridacna crocea (vieira gigante). O primeiro experimento verificou a expressão de um gene específico para a relação simbiótica em Symbiodinium A associado com as larvas dos três hospedeiros. O segundo experimento quantificou a produção de ácidos graxos nos clados A-F de Symbiodinium também associados com as larvas dos três hospedeiros; o terceiro monitorou a perda de simbiontes nos três tipos larvais associados com os clados A-F, em temperaturas de 26, 29 e 32ºC. Os principais resultados mostram que: i) um gene específico para a simbiose é expresso por Symbiodinium A associado com M. hispida e T. crocea, mas não com B. stephanieae; ii) o ácido graxo DHA é produzido em quantidades significantemente maiores pelos clados A e C associados com M. hispida e T. crocea; e iii) M. hispida e T. crocea associadas com Symbiodinium A e C possuem taxas de perda de simbiontes significantemente menores do que os demais. Esses resultados mostram que os clados A e C estabelecem um mutualismo mais robusto com M. hispida e T. crocea, mas não há relação mutualística entre Symbiodinium e B. stephanieae.
10

Aspects of Nitrogen Metabolism in Symbiotic Cnidarians

Boutilier, Ryan Michael 24 August 2012 (has links)
The pathway of seawater ammonium assimilation and influence of light on amino acid synthesis remain unresolved in cnidarian symbioses. Labeled ammonium (10 μM 15NH4Cl) in seawater was used to trace the pathway of the incorporation into amino acids in host tissue, Zoanthus sp., and zooxanthellae, Symbiodinium microadriaticum. Freshly isolated zooxanthellae were exposed to 20 μM 15NH4Cl with coral homogenate to evaluate the role of host factors on amino acid synthesis. High performance liquid chromatography and mass spectrometry was used to measure percent labeling and concentrations of amino acids. In zooxanthellae, ammonium was assimilated into glutamine likely via glutamine synthetase and into glutamate via glutamine 2-oxoglutarate amidotransferase. Interrupting photosynthesis with DCMU did not inhibit glutamine and tryptophan synthesis however reduced the 15N-enrichment of glutamate, aspartate, and ornithine in zooxanthellae, as well as arginine, ornithine, and lysine in host tissue. Coral homogenate had little effect on the 15N-enrichment of glutamine, aspartate, and alanine in freshly isolated zooxanthellae. Evidence is presented to support the uptake of ammonium ions and data shows that glutamine and not glutamate is translocated to the coral host.

Page generated in 0.0649 seconds