Ce projet de thèse porte sur la recherche de nouveaux électrolytes et additifs dans le but d’améliorer la cyclabilité d’une électrode négative composite de formule Si0.32Ni0.14Sn0.17Al0.04C0.35 et d’obtenir une interface électrode|électrolyte stable. En effet, comme la plupart des matériaux à base de silicium, ce composite de grande capacité (plus de 600 mA.h.g-1) souffre actuellement d’une faible durée de vie provenant essentiellement des expansions volumiques qu’il subit lors de sa lithiation et de sa SEI défaillante. Deux types d'électrolytes ont été évalués : (i) un mélange de carbonates d’alkyles EC/PC/3DMC auquel a été ajouté un sel de lithium (LiPF6, LiTFSI, LiFSI ou LiDFOB) ainsi que des additifs aidant à la formation de la SEI tels que le carbonate de vinylène (VC) ou le carbonate de fluoroéthylène (FEC), (ii) des liquides ioniques (LI) contenant un cation ammonium quaternaire (N1114+), imidazolium (EMI+) ou pyrrolidinium (PYR+), associé à un anion à charge délocalisée comme le bis(trifluorométhanesulfonyl)amidure (TFSI-) ou le bis(fluorosulfonyl)amidure (FSI-). L’analyse du diagramme d’ionicité de Walden a permis de mettre en évidence la bonne dissociation de LiFSI et LiPF6 dans EC/PC/3DMC assurant ainsi des conductivités ioniques supérieures à 12 mS.cm-1. Bien que possédant des propriétés de transport a priori moins intéressantes dans ce mélange ternaire que les autres sels, LiDFOB forme en réduction une SEI permettant au composite de fournir les meilleures performances en cyclage sans additif avec 560 mA.h.g-1 pour un rendement coulombique de 98,4%. L’ajout d’additif est cependant nécessaire pour atteindre les objectifs fixés par le projet en termes de rendement coulombique (>99,5%). Dans ce cas, l’ajout de 2%VC+10%FEC au mélange ternaire est le plus intéressant avec LiPF6. Le matériau fourni ainsi des capacités de 550 mA.h.g-1 durant une centaine de cycles à un régime de C/5 avec un rendement coulombique de 99,8%. En milieu LI, les performances optimales sont atteintes avec le [EMI][FSI] et 1 mol.L-1 de LiFSI. Le composite atteint alors une capacité de 635 mA.h.g-1 durant 100 cycles à un régime de C/5 avec un rendement coulombique très proche de 100%, tout en s’affranchissant de l’ajout d’additifs. Malgré une viscosité bien plus élevée que celles des mélanges de carbonates d’alkyles, cette formulation permet de générer une SEI plus stable dont la nature, principalement minérale, est issue majoritairement des produits de réduction de FSI-. / This study focuses on new electrolytes and additives in order to improve the cyclability of a Si0.32Ni0.14Sn0.17Al0.04C0.35 negative composite electrode (Si-Sn) and to obtain a stable electrolyte|electrolyte interface. Indeed, like most silicon-based materials, this high-capacity Si-Sn composite (over 600 mA.hg-1) currently suffers from a short cycle life due to volume expansion during charge-discharge processes leading to the degradation of the SEI. To improve the quality of the interface, two kinds of electrolytes were evaluated: (i) mixtures of alkyl carbonates EC/PC/3DMC in which a lithium salt (LiPF6, LiTFSI, LiFSI or LiDFOB) and additives like SEI builder (vinylene carbonate (VC) or fluoroethylene carbonate (FEC)) were added, (ii) ionic liquids (IL) based on quaternary ammonium (N1114+), imidazolium (EMI+) or pyrrolidinium (PYR+) cation, associated with delocalized charge anions such as bis(trifluoromethanesulfonyl)imide (TFSI-) or bis(fluorosulfonyl)imide (FSI-). The Walden diagram confirms the efficient dissociation of LiFSI and LiPF6 in EC/PC/3DM ensuring ionic conductivities as high as 12 mS.cm-1. Although possessing limited transport properties in such a ternary mixture compared to other salts, LiDFOB forms, without additional additives, an high quality SEI allowing the composite to provide the best performances in half cells (560 mA.hg-1 and 98.4% coulombic efficiency). The use of additive is however necessary to reach the objectives fixed by the ANR research project in terms of coulombic efficiency (>99.5%). In this case, the addition of 2%VC+10%FEC to the ternary mixture is the most interesting composition with LiPF6 as lithium salt. So, the Si-Sn nanocomposite material reaches 550 mA.h.g-1 during 100 cycles at C/5 with 99.8% efficiency. In IL, the best performances are achieved in [EMI][FSI]/LiFSI (1 mol.L-1). The performances of the Si-Sn composite reaches 635 mA.h.g-1 for 100 cycles at C/5 with coulombic efficiency close to 100%, without additives. This electrolyte formulation generates a stable SEI which the mainly mineral composition, is predominantly derived from the reduction products of FSI-.
Identifer | oai:union.ndltd.org:theses.fr/2017TOUR4025 |
Date | 14 December 2017 |
Creators | Sayah, Simon |
Contributors | Tours, Tran-Van, François, Lemordant, Daniel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds