• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MgH2-TiH2 hydrides as negative electrodesof Li-ion batteries / Les hydrures de MgH2-TiH2 en tant qu'électrodes négativesdes batteries Li-ion

Berti, Nicola 13 December 2017 (has links)
Les batteries lithium-ion sont aujourd’hui très utilisées pour alimenter l’électronique portable telle que les ordinateurs, les smartphones et les caméras. Cependant, de nouvelles applications telles que les véhicules électriques et les systèmes stationnaires de stockage d'énergie nécessitent des batteries à performances améliorées. En particulier, de nouveaux matériaux d'électrode avec des densités d'énergie plus élevées sont requis. Les hydrures de MgH2 et TiH2 et leurs mélanges possèdent de très fortes capacités électrochimiques (>1 Ah/g). Ils ont été étudiés comme matériaux d’électrode négative dans les batteries Li-ion. La réaction de conversion de ces hydrures avec du lithium et les changements structuraux induits ont été étudiés en détails pour mieux comprendre les mécanismes réactionnels et leur réversibilité. Les propriétés électrochimiques de couches minces de MgH2 et des poudres composites de MgH2+TiH2 ont été étudiées en utilisant à la fois des électrolytes organiques liquides et un électrolyte solide LiBH4. La capacité réversible et la tenue au cyclage dépendent fortement du rapport molaire entre les deux hydrures et des conditions de cyclage. Le transport de masse et la densité d’interfaces à l'intérieur de l'électrode sont identifiés comme les principaux facteurs affectant la réversibilité de la réaction de conversion / Today, lithium-ion batteries are widely used as power supplies in portable electronics such as laptops, smartphones and cameras. However, new applications such as full electric vehicles and energy storage stationary systems require enhanced battery performances. In particular, novel electrode materials with higher energy density are needed.MgH2 and TiH2 hydrides and mixtures of them have high electrochemical capacity (> 1 Ah/g). They have been studied as negative electrode materials in Li-ion batteries. The conversion reaction of lithium with these hydrides and the related microstructural changes have been deeply investigated to gain a better understanding of reaction mechanisms and their reversibility. The electrochemical properties of MgH2 thin films and MgH2+TiH2 composite powders have been evaluated using both liquid organic and solid (LiBH4) electrolytes. Reversible capacity and cycle-life are found to strongly depend on both molar ratio between the hydrides and cycling conditions. Mass transport and density of interfaces within the electrode are identified as the main factors affecting the reversibility of the conversion reaction
2

Étude de nouveaux matériaux composites de type Si/Sn Ni/Al/C pour électrode négative de batteries lithium ion

Edfouf, Zineb 09 December 2011 (has links) (PDF)
Ce mémoire est consacré à l'étude de nouveaux matériaux composites de type Si/Sn-Ni/Al/C pour former des électrodes négatives de batteries lithium ion. La microstructure de ces matériaux se présente sous la forme de nanoparticules de Si enrobées dans une matrice conductrice constituée de carbone et d'un composé intermétallique Ni3,4Sn4. La nanostructure et la composition du matériau composite lui confèrent de très bonnes performances en termes de capacité réversible, de stabilité électrochimique, et de cinétique de réaction. La mécanosynthèse a été choisie comme méthode d'élaboration. Les propriétés structurales et chimiques du composite ont été déterminées par analyses DRX, par microscopies électroniques MET et MEB, par analyses EDX et EFTEM et par spectroscopie Mössbauer de 119Sn. La caractérisation électrochimique a été réalisée par cyclage galvanostatique et par voltamétrie cyclique. La réactivité de ces matériaux envers le lithium a été étudiée par analyses DRX et spectroscopie Mössbauer de 119Sn in-situ. Ce mémoire détaille les résultats structuraux et électrochimiques obtenus pour différents matériaux composites basés sur Ni3,4Sn4 en ajoutant les éléments C, Al et Si. Une étude des mécanismes réactionnels lors du broyage mécanique ainsi que pendant le cyclage électrochimique a été effectuée et le rôle des différents éléments a été mis en évidence. Enfin, une discussion sur l'influence de la microstructure sur les performances électrochimiques des matériaux composites est donnée. Les meilleures performances électrochimiques sont obtenues pour le composite de composition nominale Ni0,14Sn0,17Si0,32Al0,04C0,35. Il présente une capacité réversible de 920 mAh/g avec une très bonne stabilité sur 280 cycles. Le matériau possède une excellente cinétique de délithiation : 90% de la capacité peut être délivrée en moins de 5 minutes. La capacité irréversible (20%) reste toutefois élevée et doit être encore améliorée en stabilisant l'interface solide/électrolyte (SEI)
3

Synthèse et propriétés électrochimiques de nouveaux nitrures mixtes de lithium et métaux de transition pour électrodes négatives performantes d'accumulateurs lithium-ion / Synthesis and electrochimicals properties of new ternary nitrides for application as negatives electrodes for lithium-ion battery

Panabiere, Eddie 11 December 2013 (has links)
Dans ce travail nous avons réalisé la synthèse de nitrures structure 2D Li3-2xCoxN et de structure 3D Li7MnN4 par méthode céramique, sous atmosphère contrôlée. Après avoir acquis la maîtrise des paramètres de synthèse, nous réalisons la caractérisation structurale et l'étude des propriétés électrochimiques de chaque matériau (capacité spécifique, rechargeabilité…). Dans le cas des matériaux 2D, des affinements par la méthode de Rietveld nous ont permis de déterminer précisément les formules de ces composés. Une étude par spectroscopie diélectrique met en évidence la présence d'une faible proportion de Co+ parmi les Co2+ à l'origine de propriétés de conduction électronique. Nous montrons pour une étude DRX in-operando que le volume de maille ne varie que de 1,5% lors de d'un cycle expliquant la stabilité des capacités de 180mAh g-1 à 300 mAh g-1 selon les conditions. Dans le cas des matériaux 3D, Li7MnN4 a montré les meilleures performances avec des capacités réversibles jusqu' 300mAh g-1. Une étude DRX in-operando a montré que le mécanisme de désinsertion du lithium se déroulé en deux biphasage et une étape de solution solide. Une optimisation des performances est possible en réduisant la taille des particules par mécanobroyage : des capacités de 250 et 120 mAh g-1 sont obtenus à régime C et 5c. L'ensemble de ces nitrures présentent une forte réactivité avec l'humidité mais leur structure a pu être préservée sous air sec / In this study, we focus on the synthesis of nitrides with 2D structure Li3-2xCoxN and 3D structure Li7MnN4 by solid state route, under controlled atmosphere. Once we master all parameters of the synthesis, we study the structural chracterization and the electrochemical properties of each compound (specific capacity, rechargeability...) In the case of 2D compounds, precises compositions were determined by Rietveld refinement A dielectric spectroscopy study demonstrate the existance of a small populations of Co+ ions among Co2+, which lead to electronic conductivity properties. By in-operando XRD study we show the lattice volume varies by only 1,5% which explains the stabilty of the specific capacity of 180mAh g-1 à 300 mAh g-1 depending on conditions. In the case of 3D compounds, Li7MnN4 showed the best performance with reversible capacities up to 300mAh g-1. A XRD in-operando study showed that the mechanism of lithium desintertion place in two biphasage and a solid solution phase. Performance optimization is possible by reducing the particle size by ball milling: capacities of 250 and 120 mAh g-1 are obtained at C and 5C rates. All these nitrides present a high reactivity with moisture but the structure was preserved in dry air
4

Study and improve the electrochemical behaviour of new negative electrodes for li-ion batteries / Etude et amélioration des propriétés électrochimiques des nouvelles électrodes négatives pour les batteries li-ion

Tesfaye, Alexander Teklit 14 November 2017 (has links)
Les accumulateurs commerciaux à base de lithium-ion (LIB) utilisent des matériaux à base de carbone (graphite) comme électrode négative; cependant, la technologie atteint sa limite en raison de la faible capacité spécifique théorique. L'objectif de cette thèse est d'étudier le comportement électrochimique de trois nouvelles anodes à haute capacité (SnSb microsturé, Ti3SiC2 anodisé et nanotubes de Si poreux) comme alternatives au graphite, d'identifier les principaux paramètres responsables de la perte de capacité et de proposer une solution commune pour améliorer leurs performances électrochimiques. Ces matériaux d'électrode présentent une bonne performance électrochimique qui les rend prometteurs pour remplacer le carbone en tant qu'électrode négative pour batteries au Li-ion. Cependant, ils présentent une perte de capacité initiale importante qui doit être résolue avant la commercialisation. Les limitations observées sont attribuées à de nombreux facteurs, et en particulier à la formation et la croissance d’une SEI à la surface des matériaux. En raison de la forte perte de la capacité et du manque d’études détaillées sur les matériaux à base d’étain, en particulier le SnSb, nous avons concentré la suite du travail à la formation et la croissance de la SEI sur cette électrode négative. L'évolution des propriétés électriques, de la composition chimique et de la morphologie du SnSb microstructuré a été étudiée en détail pour comprendre son comportement électrochimique. Pour limiter l’effet de la SEI, nous avons proposé d’appliquer un film protecteur à la surface de l'électrode. / Currently, commercial lithium ion batteries (LIBs) use carbon based materials as negative electrode; however the technology is reaching its limit because of the low theoretical specific capacity. The objective of this thesis is to study the electrochemical behaviour of three different new high capacity anodes (SnSb alloy, anodized Ti3SiC2, and Si nanotubes) as alternative to graphite, identify the main parameters responsible for the capacity fading, and propose a versatile solution to improve their electrochemical performance. These electrode materials exhibit good electrochemical performance which makes them promising candidates to replace carbon as a negative electrode for LIBs. However, their limitation due to capacity fading and the large initial irreversible capacity loss must be resolved before commercialization. The observed limitations are attributed to many factors, and particularly, to the formation and growth of SEI layer which is the common factor for all the three electrode materials. Because of the strong capacity fade and lack of many detailed studies on the Sn-based materials, specifically SnSb, we focus our study to investigate the formation and growth of SEI layer on SnSb electrode. The evolution of the electrical, compositional, and morphological properties have been investigated in detail to understand the electrochemical behavior of micron-sized SnSb. To limit the capacity fade, we propose the use of a protective film on the electrode surface. The electrochemical performance of micron-sized SnSb electrode coated with thermoplastic elastomer protective film, namely poly(styrene-b-2-hydroxyethyl acrylate) PS-b-PHEA has been achieved.
5

Étude de nouveaux matériaux composites de type Si/Sn Ni/Al/C pour électrode négative de batteries lithium ion / Study of a new Si/Sn Ni/Al/C composite material used as negative electrode for lithium ion batteries

Edfouf, Zineb 09 December 2011 (has links)
Ce mémoire est consacré à l'étude de nouveaux matériaux composites de type Si/Sn-Ni/Al/C pour former des électrodes négatives de batteries lithium ion. La microstructure de ces matériaux se présente sous la forme de nanoparticules de Si enrobées dans une matrice conductrice constituée de carbone et d'un composé intermétallique Ni3,4Sn4. La nanostructure et la composition du matériau composite lui confèrent de très bonnes performances en termes de capacité réversible, de stabilité électrochimique, et de cinétique de réaction. La mécanosynthèse a été choisie comme méthode d'élaboration. Les propriétés structurales et chimiques du composite ont été déterminées par analyses DRX, par microscopies électroniques MET et MEB, par analyses EDX et EFTEM et par spectroscopie Mössbauer de 119Sn. La caractérisation électrochimique a été réalisée par cyclage galvanostatique et par voltamétrie cyclique. La réactivité de ces matériaux envers le lithium a été étudiée par analyses DRX et spectroscopie Mössbauer de 119Sn in-situ. Ce mémoire détaille les résultats structuraux et électrochimiques obtenus pour différents matériaux composites basés sur Ni3,4Sn4 en ajoutant les éléments C, Al et Si. Une étude des mécanismes réactionnels lors du broyage mécanique ainsi que pendant le cyclage électrochimique a été effectuée et le rôle des différents éléments a été mis en évidence. Enfin, une discussion sur l'influence de la microstructure sur les performances électrochimiques des matériaux composites est donnée. Les meilleures performances électrochimiques sont obtenues pour le composite de composition nominale Ni0,14Sn0,17Si0,32Al0,04C0,35. Il présente une capacité réversible de 920 mAh/g avec une très bonne stabilité sur 280 cycles. Le matériau possède une excellente cinétique de délithiation : 90% de la capacité peut être délivrée en moins de 5 minutes. La capacité irréversible (20%) reste toutefois élevée et doit être encore améliorée en stabilisant l'interface solide/électrolyte (SEI) / This study is devoted to a new Si/Sn-Ni/Al/C composite material usable as negative electrode for lithium-ion batteries. The composite microstructure is made from Si nanoparticles embedded in a matrix, consisting of conductive carbon and Ni3.4Sn4 intermetallic compound. The nanostructure and composition of the composite material give excellent properties regarding reversible capacity, electrochemical stability, and reaction kinetics. Mechanical alloying has been chosen as synthesis method. The material structural and chemical properties have been determined by XRD analysis, by electron microscopy TEM and SEM, by EDX and EFTEM analysis and 119Sn Mössbauer spectroscopy. The electrochemical characterization was carried out by galvanostatic cycling and cyclic voltammetry. Lithium reactivity of these materials was studied by in-situ XRD analysis and 119Sn Mössbauer spectroscopy. This manuscript details the structural and electrochemical results obtained from various composite materials based on Ni3.4Sn4 by adding C, Al and Si elements. Reaction mechanisms during mechanical alloying and during electrochemical cycling have been investigated and the role of the different elements has been demonstrated. Finally, a discussion of the microstructure influence on the electrochemical performance of the composite materials is given. The best electrochemical properties are obtained for the composite material with nominal composition Ni0.14Sn0.17Si0.32Al0.04C0.35, which has a reversible capacity of 920 mAh/g with a very good stability of 280 cycles. Excellent kinetics during délithiation are obtained : 90% of capacity can be delivered in less than 5 minutes. However, the irreversible capacity (20 %) remains high and should be improved by stabilizing the solid/electrolyte interface (SEI)
6

SYNTHESE ET ETUDE ELECTROCHIMIQUE DE NITRURES MIXTES DE LITHIUM ET DE METAL DE TYPE Li3-xMxN (M = Co, Cu, Ni) UTILISABLES COMME ELECTRODE NEGATIVE DANS LES ACCUMULATEURS LI-ION.

Ducros, Jean-Baptiste 12 December 2006 (has links) (PDF)
Dans ce travail on réalise la synthèse de nitrures doubles de lithium et de métal de type Li3-nxMx[]nx-xN (Mn+ = Co2+, Cu+ et Ni2+, [] représente les lacunes en ions Li+) par une méthode céramique, sous atmosphère contrôlée, pour une large gamme de composition (0 < x = 0,6). L'évolution des paramètres de maille de ces nitrures et l'analyse fine des diagrammes de diffraction des rayons X indiquent la présence de Co2+ et de Ni2+ en position interfeuillets, ainsi que la présence simultanée de lacunes dans le plan azoté. Dans le cas du cuivre, des ions Cu+ interfeuillets sont présents, sans lacunes dans le plan azoté. Après avoir acquis la maîtrise des paramètres de synthèse, nous réalisons la caractérisation structurale et l'étude des propriétés électrochimiques de chaque matériau en terme de capacité spécifique, rechargeabilité, durée de vie, cinétique, etc. On démontre dans tous les cas que les systèmes redox impliqués font intervenir les divers degrés d'oxydation des métaux mais également ceux de l'azote à travers d'entités (métal-N).Les performances en cyclage galvanostatique sont largement dépendantes du métal et du domaine de potentiel concerné. Des matériaux d'intercalation du lithium sont concernés dans le domaine de potentiel [0,02 – 1,0] V vs Li+/Li car ils ne font intervenir que les systèmes CoII/CoI et NiII/NiI, avec insertion du lithium dans les lacunes, et des capacités stables mais restreintes (180 mAh.g-1). Une optimisation des performances est possible si on étend le domaine de cyclage à 1,1 V, avec une capacité spécifique stable de l'ordre de 320 mAh.g-1 sur plusieurs centaines de cycles, pour le matériau Li2,23Co0,39N.
7

Électrodes négatives composites à base d'étain ou de silicium pour accumulateur lithium-ion avec accrochage souple et/ou enrobage à mémoire de forme / Tin- or silicon-based negative electrode composites for lithium-ion battery with floppy pinning and/or memory shape coating

Ladam, Alix 08 December 2016 (has links)
Ce mémoire est consacré à l’étude de nouveaux composites à base de Ni/Ti/Sn/Si comme matériaux d’électrodes négatives pour accumulateurs rechargeables Li-ion. Ces matériaux se présentent sous la forme d’une matrice active ou inactive électrochimiquement, enrichie avec du silicium pour former un composite nanostructuré. Ils présentent des capacités massiques supérieures à celles du carbone avec de bonnes performances en terme de capacité réversible, stabilité électrochimique, et cinétique de réaction. La mécanosynthèse a été choisie comme méthode d’élaboration de ces composites. Les propriétés physico-chimiques des composites ainsi synthétisés ont été caractérisées par diffraction des Rayons X, spectrométrie Mössbauer de 119Sn et microscopie électronique à balayage. Les caractérisations électrochimiques ont été effectuées par cyclages galvanostatiques. La complémentarité entre ces différentes techniques a permis d’analyser les mécanismes réactionnels. L’étude détaillée de ces nouveaux matériaux composites, nous a permis de mettre en évidence l’influence de la matrice et du taux d’enrichissement en silicium sur les performances électrochimiques (capacité réversible pouvant atteindre 1300 mAh.g¡1 et efficacité coulombique >99,5%). Ces matériaux présentent une grande flexibilité de composition permettant d’adapter leur capacité massique aux applications visées. / This work has been devoted to new Ni/Ti/Sn/Si based composites as negative electrode materials for lithium-ion batteries. Thesematerials are formed by tin based electrochemically active matrix and/or silicon based electrochemically inactive matrix enriched with silicon. They were obtained by ball milling method leading to nanostructured compositeswith strongly improved electrochemical performances compared to commercially used carbon. This includes reversible capacity, electrochemical stability and reaction kinetics.The composites were characterized by X-ray diffraction, 119Sn Mössbauer spectroscopy and scanning electron microscopy while their electrochemical performances were carried out by galvanostatic cycling. Finally, the reaction mechanisms were elucidated from X-ray diffraction and 119Sn Mössbauer spectroscopy used in operando mode. By combining these results with empirical models, it has been possible to optimize the composition and the synthesis conditions of the composite to improve the electrochemical properties and obtain reversible specific capacity up to 1300 mAh.g-1 with Coulombic efficiency higher than 99.5%. In addition, the composition flexibility of these materials allows to adapt their electrochemical properties to specific applications.
8

Synthèse et propriétés électrochimiques de nouveaux nitrures mixtes de lithium et métaux de transition pour électrodes négatives performantes d'accumulateurs lithium-ion

Panabiere, Eddie 11 December 2013 (has links) (PDF)
Dans ce travail nous avons réalisé la synthèse de nitrures structure 2D Li3-2xCoxN et de structure 3D Li7MnN4 par méthode céramique, sous atmosphère contrôlée. Après avoir acquis la maîtrise des paramètres de synthèse, nous réalisons la caractérisation structurale et l'étude des propriétés électrochimiques de chaque matériau (capacité spécifique, rechargeabilité...). Dans le cas des matériaux 2D, des affinements par la méthode de Rietveld nous ont permis de déterminer précisément les formules de ces composés. Une étude par spectroscopie diélectrique met en évidence la présence d'une faible proportion de Co+ parmi les Co2+ à l'origine de propriétés de conduction électronique. Nous montrons pour une étude DRX in-operando que le volume de maille ne varie que de 1,5% lors de d'un cycle expliquant la stabilité des capacités de 180mAh g-1 à 300 mAh g-1 selon les conditions. Dans le cas des matériaux 3D, Li7MnN4 a montré les meilleures performances avec des capacités réversibles jusqu' 300mAh g-1. Une étude DRX in-operando a montré que le mécanisme de désinsertion du lithium se déroulé en deux biphasage et une étape de solution solide. Une optimisation des performances est possible en réduisant la taille des particules par mécanobroyage : des capacités de 250 et 120 mAh g-1 sont obtenus à régime C et 5c. L'ensemble de ces nitrures présentent une forte réactivité avec l'humidité mais leur structure a pu être préservée sous air sec
9

Impact de la formulation d'électrolytes sur les performances d'une électrode négative nanocomposite silicium-étain pour batteries Li-ion / Impact of the electrolyte formulation on the performance of a silicon-tin nanocomposite negative electrode for lithium-ion batteries

Sayah, Simon 14 December 2017 (has links)
Ce projet de thèse porte sur la recherche de nouveaux électrolytes et additifs dans le but d’améliorer la cyclabilité d’une électrode négative composite de formule Si0.32Ni0.14Sn0.17Al0.04C0.35 et d’obtenir une interface électrode|électrolyte stable. En effet, comme la plupart des matériaux à base de silicium, ce composite de grande capacité (plus de 600 mA.h.g-1) souffre actuellement d’une faible durée de vie provenant essentiellement des expansions volumiques qu’il subit lors de sa lithiation et de sa SEI défaillante. Deux types d'électrolytes ont été évalués : (i) un mélange de carbonates d’alkyles EC/PC/3DMC auquel a été ajouté un sel de lithium (LiPF6, LiTFSI, LiFSI ou LiDFOB) ainsi que des additifs aidant à la formation de la SEI tels que le carbonate de vinylène (VC) ou le carbonate de fluoroéthylène (FEC), (ii) des liquides ioniques (LI) contenant un cation ammonium quaternaire (N1114+), imidazolium (EMI+) ou pyrrolidinium (PYR+), associé à un anion à charge délocalisée comme le bis(trifluorométhanesulfonyl)amidure (TFSI-) ou le bis(fluorosulfonyl)amidure (FSI-). L’analyse du diagramme d’ionicité de Walden a permis de mettre en évidence la bonne dissociation de LiFSI et LiPF6 dans EC/PC/3DMC assurant ainsi des conductivités ioniques supérieures à 12 mS.cm-1. Bien que possédant des propriétés de transport a priori moins intéressantes dans ce mélange ternaire que les autres sels, LiDFOB forme en réduction une SEI permettant au composite de fournir les meilleures performances en cyclage sans additif avec 560 mA.h.g-1 pour un rendement coulombique de 98,4%. L’ajout d’additif est cependant nécessaire pour atteindre les objectifs fixés par le projet en termes de rendement coulombique (>99,5%). Dans ce cas, l’ajout de 2%VC+10%FEC au mélange ternaire est le plus intéressant avec LiPF6. Le matériau fourni ainsi des capacités de 550 mA.h.g-1 durant une centaine de cycles à un régime de C/5 avec un rendement coulombique de 99,8%. En milieu LI, les performances optimales sont atteintes avec le [EMI][FSI] et 1 mol.L-1 de LiFSI. Le composite atteint alors une capacité de 635 mA.h.g-1 durant 100 cycles à un régime de C/5 avec un rendement coulombique très proche de 100%, tout en s’affranchissant de l’ajout d’additifs. Malgré une viscosité bien plus élevée que celles des mélanges de carbonates d’alkyles, cette formulation permet de générer une SEI plus stable dont la nature, principalement minérale, est issue majoritairement des produits de réduction de FSI-. / This study focuses on new electrolytes and additives in order to improve the cyclability of a Si0.32Ni0.14Sn0.17Al0.04C0.35 negative composite electrode (Si-Sn) and to obtain a stable electrolyte|electrolyte interface. Indeed, like most silicon-based materials, this high-capacity Si-Sn composite (over 600 mA.hg-1) currently suffers from a short cycle life due to volume expansion during charge-discharge processes leading to the degradation of the SEI. To improve the quality of the interface, two kinds of electrolytes were evaluated: (i) mixtures of alkyl carbonates EC/PC/3DMC in which a lithium salt (LiPF6, LiTFSI, LiFSI or LiDFOB) and additives like SEI builder (vinylene carbonate (VC) or fluoroethylene carbonate (FEC)) were added, (ii) ionic liquids (IL) based on quaternary ammonium (N1114+), imidazolium (EMI+) or pyrrolidinium (PYR+) cation, associated with delocalized charge anions such as bis(trifluoromethanesulfonyl)imide (TFSI-) or bis(fluorosulfonyl)imide (FSI-). The Walden diagram confirms the efficient dissociation of LiFSI and LiPF6 in EC/PC/3DM ensuring ionic conductivities as high as 12 mS.cm-1. Although possessing limited transport properties in such a ternary mixture compared to other salts, LiDFOB forms, without additional additives, an high quality SEI allowing the composite to provide the best performances in half cells (560 mA.hg-1 and 98.4% coulombic efficiency). The use of additive is however necessary to reach the objectives fixed by the ANR research project in terms of coulombic efficiency (>99.5%). In this case, the addition of 2%VC+10%FEC to the ternary mixture is the most interesting composition with LiPF6 as lithium salt. So, the Si-Sn nanocomposite material reaches 550 mA.h.g-1 during 100 cycles at C/5 with 99.8% efficiency. In IL, the best performances are achieved in [EMI][FSI]/LiFSI (1 mol.L-1). The performances of the Si-Sn composite reaches 635 mA.h.g-1 for 100 cycles at C/5 with coulombic efficiency close to 100%, without additives. This electrolyte formulation generates a stable SEI which the mainly mineral composition, is predominantly derived from the reduction products of FSI-.

Page generated in 0.0716 seconds