Return to search

Unsupervised Band Selection and Segmentation in Hyper/Multispectral Images

The title of the thesis focuses the attention on hyperspectral image segmentation, that is, we want to detect salient regions in a hyperspectral image and isolate them as accurate as possible. This purpose presents two main problems: Firstly, the fact of using hyperspectral imaging not only give us a huge amount of information, but we also have to face the problem of selecting somehow the information avoiding redundancies.Secondly, the problem of segmentation strictly speaking is still a challenging question whatever the input image would be.This thesis is focused on solving the whole process by means of building an image processing method that analyses and optimises the information acquired by a multispectral device. After that, it detects the main regions that are present in the scene in an image segmentation procedure. Therefore, this work will be divided into two parts. In the first part, an approach for selecting the most relevant subset of input bands will be presented. In the second part, this reduced representation of the initial bands will be the input data of a segmentation method.Finally, the main contributions of this PhD work could be briefly summarised as follows. On the one hand, we have proposed a pre-processing stage with an unsupervised band selection approach based on information measures that reduces considerably the amount of data. This approach has been successfully compared with well-known algorithms of the literature, showing its good performance with regard to pixel image classification tasks. On the other hand, after the band selection stage, two unsupervised segmentation procedures for detecting the main parts in multispectral images have been also developed. Regarding to this segmentation part, we have mainly contributed with two measures of similarity among regions. An objective functional for selecting an optimal (or close to optimal) partition of the image is another relevant contribution too.

Identiferoai:union.ndltd.org:TDX_UJI/oai:www.tdx.cat:10803/10483
Date18 September 2008
CreatorsMartínez Usó, Adolfo
ContributorsPla Bañón, Filiberto, García-Sevilla, Pedro, Universitat Jaume I. Departament de Llenguatges i Sistemes Informàtics
PublisherUniversitat Jaume I
Source SetsUniversitat Jaume I
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Page generated in 0.0017 seconds