Return to search

Entropie et complexité locale des systèmes dynamiques différentiables

Dans ce travail nous nous intéressons aux systèmes dynamiques du point de vue de l'entropie. Nous rappellons tout d'abord le formalisme des structures d'entropie introduit par T.Downarowicz. Dans ce cadre on donne en particulier une preuve élémentaire du principe variationnel pour l'entropie de queue et on généralise certaines structures d'entropie aux endomorphismes.<br>Dans un deuxième temps, nous reprenons l'approche semi-algébrique de Y. Yomdin et M. Gromov pour contrôler la dynamique locale des applications de classe $C^r$. On présente une preuve complète du lemme algébrique de Gromov, qui est un point clé de la théorie de Yomdin. Aussi nous déduisons de nouvelles applications dynamiques de cette théorie : d'une part nous bornons l'entropie de queue mesurée en fonction de l'exposant de Lyapounov ; d'autre part nous généralisons une formule due à J.Buzzi pour l'entropie k-dimensionnelle d'un produit d'applications de classe $C^{\infty}$.<br>On s'intéresse enfin à la théorie des extensions symboliques due à M.Boyle et T.Downarowicz pour les applications $C^r$ et affines par morceaux du plan. On exhibe en particulier des exemples de dynamique $C^r$ de l'intervalle ayant une grande entropie d'extension symbolique. Nous donnerons aussi une borne de l'entropie d'extensions symboliques pour les applications affines par morceaux du plan.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00347444
Date01 December 2008
CreatorsBurguet, David
PublisherEcole Polytechnique X
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds