Dans cette thèse on considère le prolongement méromorphe fini de la résolvante du laplacien libre sur une variété riemannienne connexe non compacte de dimension supérieure ou égale à 2. Ses pôles sont appelés résonances. On suppose que la variété possède certaines symétries comme S^1, (S^1)^m ou encore SO(n). Avec cette hypothèse, on construit des potentiels V dits isorésonants c'est-à-dire tels que le laplacien plus V ait les mêmes résonances que le laplacien libre avec les mêmes multiplicités. Au passage on est amené à estimer le bas du spectre du laplacien agissant sur les fonctions S^1 homogènes à support compact. On montre également que ces potentiels isorésonants peuvent modifier l'ordre des résonances. Enfin, les résonances sont parfois définies comme pôles de l'opérateur de diffusion : on montre que dans ce cadre on a aussi l'isorésonance de nos potentiels.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00336843 |
Date | 24 October 2008 |
Creators | Autin, Aymeric |
Publisher | Université de Nantes |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds