Complex spatial relationships and patterns in multivariate data are relatively simple to identify visually but di cult to detect computation- ally. For this reason, Anivis, an interactive tool for visual exploration of multivariate quantitative pure serial periodic data was developed. The data has four dimensions depth, laterality, frequency and time. The data was visualized as an animated heatmap, by mapping depth and laterality to coordinates in a pixel grid and frequency to color. Transfer functions were devised to map a single variable to color through parametric curves. Anivis implemented heatmap generation through both weighted sum and deconvolution for comparison reasons. Deconvolution exhibited a to have better theoretical and practical performance. In addition to the heatmap visualization a scatter-plot was added in order to visualize the causal relationships between data points and high value areas in the heatmap visualization. Performance and applicability of the tool were tested and verified on experimental data from the Karolinksa Institute’s Department of Neuroscience. / Komplexa spatiala mo ̈nster och fo ̈rh ̊allanden i multivariat data a ̈r rel- ativt sv ̊ara att identifiera via bera ̈kningar men simpla att identifiera vi- suellt. Att visualisera data fo ̈r denna typ av data-analys anva ̈nds ofta i m ̊anga olika typer av fa ̈lt. Detta motiverade utvecklingen av Anivis; ett interaktivt verktyg fo ̈r visuell utforskning av multivariat kvantitativ data av neural aktivitet. Anivis anva ̈nder sig av dataset baserade p ̊a experi- mentell data fr ̊an en forskningsgrupp p ̊a Karolinska Institutets Institution fo ̈r Neurovetenskap. Dessa fyrdimensionella dataset best ̊ar av ma ̈tningar fr ̊an neuroner i form av deras position, aktivitet i form av frekvens och tidpunkt. Denna data anva ̈nds fo ̈r att generera en animerad heatmap, da ̈r neuroners frekvensva ̈rden visas i form av f ̈arg. Frekvensva ̈rdena om- vandlades till fa ̈rgva ̈rden via ̈overg ̊angsfunktioner som kopplar numeriska va ̈rden till fa ̈rgva ̈rden via parametriserade kurvor. Anivis lyckades imple- mentera tv ̊a olika metoder f ̈or att generera heatmap, viktade summor och dekonvolution. Dessa tv ̊a metoder ja ̈mfo ̈rdes med varandra, varav dekon- volution visade sig vara den teoretiskt och praktiskt e↵ektivaste meto- den. Utvecklingen av Anivis visade a ̈ven behovet fo ̈r ett punktdiagram fo ̈r att visualisera f ̈orh ̊allandet mellan ma ̈tta frekvensv ̈arden och spatial frekvensfo ̈rdelning i heatmappen.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-186860 |
Date | January 2016 |
Creators | Roa Rodríguez, Rodrigo, Lundin, Robert |
Publisher | KTH, Skolan för datavetenskap och kommunikation (CSC) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds