We consider a variational formulation of a Bernoulli-type free boundary problem for the Laplacian operator with discontinuous boundary data. We show the existence of a weak solution to the problem. Moreover, we show that the solution has symmetry properties inherited by symmetric data. These results are achieved through the use of comparison arguments, the celebrated method of moving planes, and several elaborated techniques from existing literature. / Vi studerar ett Bernoulli frirandsproblem för Laplaceoperatorn med diskontinuerliga randdata. Detta görs via en variationsformulering av problemet. Vi visar att en svag lösning existerar för problemet. Utöver det visar vi bland annat att den svaga lösningen har symmetriegenskaper. Dessa resultat uppnås genom jämförelseargument, den välkända "moving-plane” metoden, samt flera utarbetade tekniker från befintlig litteratur.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-344220 |
Date | January 2023 |
Creators | Basilio Kuosmanen, Seuri |
Publisher | KTH, Matematik (Avd.) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2023:452 |
Page generated in 0.0028 seconds