Every day, machine learning (ML) and artificial intelligence (AI) embeds itself further into domestic and industrial technologies. Interaction de- signers have historically struggled to engage directly with the subject, facing a shortage of appropriate methods and abstractions. There is a need to find ways though which interaction design practitioners might integrate ML into their work, in order to democratize and diversify the field. This thesis proposes a mode of inquiry that considers the inter- active qualities of what machine learning does, as opposed the tech- nical specifications of what machine learning is. A shift in focus from the technicality of ML to the artifacts it creates allows the interaction designer to situate its existing skill set, affording it to engage with ma- chine learning as a design material. A Research-through-Design pro- cess explores different methodological adaptions, evaluated through user feedback and an-in depth case analysis. An elaborated design experiment, Multiverse, examines the novel, non-anthropomorphic aesthetic qualities of generative literature. It prototypes interactions with bidirectional literature and studies how these transform the reader into a cybertextual “user-reader”. The thesis ends with a discussion on the implications of machine written literature and proposes a number of future investigations into the research space unfolded through the prototype.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mau-21222 |
Date | January 2020 |
Creators | Lagerkvist, Love |
Publisher | Malmö universitet, Fakulteten för kultur och samhälle (KS), Malmö universitet/Kultur och samhälle |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds