Nous étudions certaines décompositions de M en polyèdres idéaux, où M est une variété hyperbolique à pointe(s), de dimension 3. Par un théorème d'Epstein et Penner, il existe une telle décomposition, dite ``de Delaunay'', canonique en un sens géométrique. <br /><br />Au chapitre 1 nous trouvons la décomposition de Delaunay quand M fibre sur le cercle avec pour fibre un tore percé. La méthode consiste à ``deviner'' la <br />combinatoire de la décomposition, puis à trouver des angles dièdres positifs pour ses polyèdres combinatoires : un théorème de Rivin dit que tout point critique de la fonctionelle volume dans l'espace de déformation des angles dièdres fournit la métrique hyperbolique. Les inégalités établies pour montrer l'existence d'un tel point critique permettent alors de vérifier que la décomposition est bien de Delaunay. <br /><br />Au chapitre 2 nous étendons la méthode à certains complémentaires d'entrelacs (entrelacs à 2 ponts notamment). Au chapitre 3 nous l'étendons aux coeurs convexes de groupes quasi-fuchsiens du tore percé (la décomposition est alors infinie, et certaines <br />pièces ne sont pas des polyèdres). Nous obtenons ainsi une nouvelle preuve du théorème des laminations de plissage pour le tore percé. Au chapitre 4, nous étendons partiellement la méthode aux complémentaires d'entrelacs arborescents : sans <br />trouver de point critique, nous caractérisons les entrelacs arborescents hyperboliques. <br /><br />Au chapitre 5, qui éclaire un passage du chapitre 3, nous montrons que certains polynômes de Laurent, qui généralisent les nombres de Markoff, n'ont que des coefficients positifs.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00119465 |
Date | 08 December 2006 |
Creators | Guéritaud, François |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds