Die Metaphasenspindel ist eine selbstorganisierende molekulare Maschine, die die entscheidende Funktion erfüllt, das Genom während der Zellteilung gleichmäßig zu trennen. Spindellänge und -form sind emergente Eigenschaften, die durch komplexe Wechselwirkungsnetzwerke zwischen Molekülen hervorgerufen werden. Obwohl erhebliche Fortschritte beim Verständnis der einzelnen molekularen Akteure erzielt wurden, die ihre Länge und Form beeinflussen, haben wir erst kürzlich damit begonnen, die Zusammenhänge zwischen Spindelmorphologie, Dynamik und Materialeigenschaften zu untersuchen.
In dieser Arbeit untersuchte ich zunächst quantitativ die Rolle zweier molekularer Kraftgeneratoren - Kinesin-5 und Dynein - bei der Regulierung der Spindelform von Xenopus-Eiextrakt. Eine Störung ihrer Aktivität veränderte die Spindelmorphologie, ohne die Gesamtmasse der Mikrotubuli zu beeinflussen. Um die Spindelform physikalisch zu stören, wurde ein Optical Stretcher (OS) -Aufbau entwickelt. Obwohl das OS Vesikel in Extrakten verformen könnte, konnte keine Kraft auf Spindeln ausgeübt werden. Die Untersuchung des Brechungsindex der Struktur mittels optischer Beugungstomographie (ODT) ergab, dass es keinen Unterschied zwischen Spindel und Zytoplasma gab. Korrelative Fluoreszenz- und ODT-Bildgebung zeigten, wie sich die Materialeigenschaften innerhalb verschiedener Biomoleküle räumlich unterschieden. Die Gesamttrockenmasse der Spindel skalierte mit der Länge, während die Gesamtdichte konstant blieb. Interessanterweise waren die Spindeln in HeLa-Zellen dichter als das Zytoplasma. Schließlich deckte eine störende Mikrotubulusdichte auf, wie die Gesamttubulinkonzentration die Spindelgröße, die Gesamtmasse und die Materialeigenschaften regulierte.
Insgesamt bietet diese Studie eine grundlegende Charakterisierung der physikalischen Eigenschaften der Spindel und hilft dabei, Zusammenhänge zwischen der Biochemie und der Biophysik einer aktiven Form weicher Materie zu beleuchten. / The metaphase spindle is a self-organising molecular machine that performs the critical function of segregating the genome equally during cell division. Spindle length and shape are emergent properties brought about by complex networks of interactions between molecules. Although significant progress has been made in understanding the individual molecular players influencing its length and shape, we have only recently started exploring the links between spindle morphology, dynamics, and material properties. A thorough analysis of spindle material properties is essential if we are to comprehend how such a dynamic structure responds to forces, and maintains its steady-state length and shape.
In this work, I first quantitatively investigated the role of two molecular force generators– Kinesin-5 and Dynein in regulating Xenopus egg extract spindle shape. Perturbing their activity altered spindle morphology without impacting total microtubule mass. To physically perturb spindle shape, an Optical Stretcher (OS) setup was developed. Although the OS could deform vesicles in extracts, force could not be exerted on spindles. Investigating the structure’s refractive index using Optical Diffraction Tomography (ODT) revealed that there was no difference between the spindle and cytoplasm. Correlative fluorescence and ODT imaging revealed how material properties varied spatially within different biomolecules. Additionally, spindle mass density and the microtubule density were correlated. The total dry mass of the spindle scaled with length while overall density remained constant. Interestingly, spindles in HeLa cells were denser than the cytoplasm. Finally, perturbing microtubule density uncovered how total tubulin concentration regulated spindle size, overall mass and material properties.
Overall, this study provides a fundamental characterisation of the spindle’s physical properties and helps illuminate links between the biochemistry and biophysics of an active form of soft matter.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/22726 |
Date | 16 October 2020 |
Creators | Biswas, Abin |
Contributors | Guck, Jochen, Herrmann, Andreas, Reber, Simone |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/ |
Page generated in 0.0028 seconds