L’énergie éolienne, l’une des énergies renouvelables les plus compétitives, est considérée comme une solution qui remédie aux inconvénients de l’énergie fossile. Pour une meilleure gestion et exploitation de cette énergie, des prévisions de sa production s’avèrent nécessaires. Les méthodes de prévisions utilisées dans la littérature permettent uniquement une prévision de la moyenne annuelle de cette production. Certains travaux récents proposent l’utilisation du Théorème Central Limite (TCL), sous des hypothèses non classiques, pour l’estimation de la production annuelle moyenne de l’énergie éolienne ainsi que sa variance pour une seule turbine. Nous proposons dans cette thèse une extension de ces travaux à un parc éolien par relaxation de l’hypothèse de stationnarité la vitesse du vent et la production d’énergie, en supposant que ces dernières sont saisonnières. Sous cette hypothèse la qualité de la prévision annuelle s’améliore considérablement. Nous proposons aussi de prévoir la production d’énergie éolienne au cours des quatre saisons de l’année. L’utilisation du modèle fractal, nous permet de trouver une division ”naturelle” de la série de la vitesse du vent afin d’affiner l’estimation de la production éolienne en détectant les points de ruptures. Dans les deux derniers chapitres, nous donnons des outils statistiques de la détection des points de ruptures et d’estimation des modèles fractals. / The wind energy, one of the most competitive renewable energies, is considered as a solution which remedies the inconveniences of the fossil energy. For a better management and an exploitation of this energy, forecasts of its production turn out to be necessary. The methods of forecasts used in the literature allow only a forecast of the annual mean of this production. Certain recent works propose the use of the Central Limit Theorem (CLT), under not classic hypotheses, for the estimation of the mean annual production of the wind energy as well as its variance for a single turbine. We propose in this thesis, an extension of these works in a wind farm by relaxation of the hypothesis of stationarity the wind speed and the power production, supposing that the latter are seasonal. Under this hypothesis the quality of the annual forecast improves considerably. We also suggest planning the wind power production during four seasons of the year. The use of the fractal model, allows us to find a "natural" division of the series of the wind speed to refine the estimation of the wind production by detecting abrupt change points. Statistical tools of the change points detection and the estimation of fractal models are presented in the last two chapters.
Identifer | oai:union.ndltd.org:theses.fr/2015CLF22554 |
Date | 28 February 2015 |
Creators | Haouas, Nabiha |
Contributors | Clermont-Ferrand 2, Bertrand, Pierre, Ben Ammou, Saloua |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds